Bültmann & Gerriets
Sabine Müller liest aus "Oldenburger Land. Radeln für die Seele"
03.09.2025 um 19:00 Uhr
A First Course in Optimization Theory
von Rangarajan K. Sundaram
Verlag: Cambridge University Press
Gebundene Ausgabe
ISBN: 978-0-521-49719-0
Erschienen am 01.06.1996
Sprache: Englisch
Format: 260 mm [H] x 183 mm [B] x 25 mm [T]
Gewicht: 901 Gramm
Umfang: 376 Seiten

Preis: 163,40 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 6. August.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

A First Course in Optimization Theory introduces students to optimization theory and its use in economics and allied disciplines. The first of its three parts examines the existence of solutions to optimization problems in R(superscript n), and how these solutions may be identified. The second part explores how solutions to optimization problems change with changes in the underlying parameters, and the last part provides an extensive description of the fundamental principles of finite- and infinite-horizon dynamic programming. Each chapter contains a number of detailed examples explaining both the theory and its applications for first-year master's and graduate students. "Cookbook" procedures are accompanied by a discussion of when such methods are guaranteed to be successful, and equally importantly, when they could fail. Each result in the main body of the text is also accompanied by a complete proof. A preliminary chapter and three appendices are designed to keep the book mathematically self-contained.



1. Mathematical preliminaries; 2. Optimization in Rn; 3. Existence of solutions: the Weierstrass theorem; 4. Unconstrained optima; 5. Equality constraints and the theorem of Lagrange; 6. Inequality constraints and the theorem of Kuhn and Tucker; 7. Convex structures in optimization theory; 8. Quasi-convexity and optimization; 9. Parametric continuity: the maximum theorem; 10. Supermodularity and parametric monotonicity; 11. Finite-horizon dynamic programming; 12. Stationary discounted dynamic programming; Appendix A. Set theory and logic: an introduction; Appendix B. The real line; Appendix C. Structures on vector spaces; Bibliography.


andere Formate