Bültmann & Gerriets
Ayla Dade liest aus «Like Hearts We Heal»
18.11.2025 um 19:30 Uhr
Essential Math for Data Science
Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics
von Thomas Nield
Verlag: O'Reilly Media
Hardcover
ISBN: 978-1-0981-0293-7
Erschienen am 30.06.2022
Sprache: Englisch
Format: 232 mm [H] x 176 mm [B] x 18 mm [T]
Gewicht: 620 Gramm
Umfang: 333 Seiten

Preis: 66,00 €
keine Versandkosten (Inland)


Jetzt bestellen und schon ab dem 05. August in der Buchhandlung abholen

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Klappentext

Thomas Nield is the founder of Nield Consulting Group as well as an instructor at O'Reilly Media and University of Southern California. He enjoys making technical content relatable and relevant to those unfamiliar or intimidated by it. Thomas regularly teaches classes on data analysis, machine learning, mathematical optimization, and practical artificial intelligence. At USC he teaches AI System Safety, developing systematic approaches for identifying AI-related hazards in aviation and ground vehicles. He's authored two books, including Getting Started with SQL (O'Reilly) and Learning RxJava (Packt).

He is also the founder and inventor of Yawman Flight, a company developing universal handheld flight controls for flight simulation and unmanned aerial vehicles.



Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.

Learn how to:

  • Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning
  • Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon
  • Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance
  • Manipulate vectors and matrices and perform matrix decomposition
  • Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks
  • Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market


andere Formate