Bültmann & Gerriets
Marius Kulin liest aus «A Crown Drowned in Shadows»
19.09.2025 um 19:00 Uhr
Statistics and Data Analysis for Financial Engineering
von David Ruppert
Verlag: Springer New York
Reihe: Springer Texts in Statistics
Hardcover
ISBN: 978-1-4614-2749-0
Auflage: 2011
Erschienen am 27.12.2012
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 36 mm [T]
Gewicht: 984 Gramm
Umfang: 660 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 19. August in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

106,99 €
merken
zum E-Book (PDF) 96,29 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis
Biografische Anmerkung

Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook Statistics and Finance: An Introduction, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration.

The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus.

Some exposure to finance is helpful.



Introduction.- Returns.- Fixed income securities.- Exploratory data analysis.- Modeling univariate distributions.- Resampling.- Multivariate statistical models.- Copulas.- Time series models: basics.- Time series models: further topics.- Portfolio theory.- Regression: basics.- Regression: troubleshooting.- Regression: advanced topics.- Cointegration.- The capital asset pricing model.- Factor models and principal components.- GARCH models.- Risk management.- Bayesian data analysis and MCMC.- Nonparametric regression and splines.



David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science, School of Operations Research and Information Engineering, Cornell University, where he teaches statistics and financial engineering and is a member of the Program in


Financial Engineering. His research areas include asymptotic theory, semiparametric regression, functional data analysis, biostatistics, model calibration, measurement error, and astrostatistics. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the Electronic Journal of Statistics, former Editor of the Institute of Mathematical Statistics' Lecture Notes--Monographs Series, and former Associate Editor of several major statistics journals. Professor Ruppert has published over 100 scientific papers and four books: Transformation and Weighting in Regression, Measurement Error in Nonlinear Models, Semiparametric Regression, and Statistics and Finance: An Introduction.

 


andere Formate
weitere Titel der Reihe