Bültmann & Gerriets
Theory of Operator Algebras III
von Masamichi Takesaki
Verlag: Springer Berlin Heidelberg
Reihe: Encyclopaedia of Mathematical Sciences Nr. 127
Gebundene Ausgabe
ISBN: 978-3-540-42913-5
Auflage: 2003
Erschienen am 01.11.2002
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 36 mm [T]
Gewicht: 1016 Gramm
Umfang: 572 Seiten

Preis: 192,59 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 21. Juli.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

XIII Ergodic Transformation Groups and the Associated von Neumann Algebras.- XIV Approximately Finite Dimensional von Neumann Algebras.- XV Nuclear C*-Algebras.- XVI Injective von Neumann Algebras.- XVII Non-Commutative Ergodic Theory.- XVIII Structure of Approximately Finite Dimensional Factors.- XIX Subfactors of an Approximately Finite Dimensional Factor of Type II1.- Notation Index.



to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. A factor is a von Neumann algebra with trivial centre and the work of Murray and von Neumann contained a reduction of all von Neumann algebras to factors and a classification of factors into types I, II and III. C* -algebras are self-adjoint operator algebras on Hilbert space which are closed in the norm topology. Their study was begun in the work of Gelfand and Naimark who showed that such algebras can be characterized abstractly as involutive Banach algebras, satisfying an algebraic relation connecting the norm and the involution. They also obtained the fundamental result that a commutative unital C* -algebra is isomorphic to the algebra of complex valued continuous functions on a compact space - its spectrum. Since then the subject of operator algebras has evolved into a huge mathematical endeavour interacting with almost every branch of mathematics and several areas of theoretical physics.


andere Formate
weitere Titel der Reihe