Bültmann & Gerriets
Ayla Dade liest aus «Like Hearts We Heal»
18.11.2025 um 19:30 Uhr
Idealtheorie
von W. Krull
Verlag: Springer Berlin Heidelberg
Reihe: Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge Nr. 3
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-94181-8
Auflage: 1935
Erschienen am 13.08.2013
Sprache: Deutsch
Umfang: 152 Seiten

Preis: 42,99 €

42,99 €
merken
zum Hardcover 54,99 €
Klappentext
Inhaltsverzeichnis

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.



§1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Ideal theorie.- 5. Ganz abgeschlossene Integritätsbereiche.- §2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der 0-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- §3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheits-sätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das "Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. Der Bézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von van der Waerden.- 27. Der Grad einer Mannigfaltigkeit und der "allgemeine" BézouTsche Satz.- 28. Zweifach projektive Räume.- §4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30 Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- §5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung eines O-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines "Grundkörpers"..- §6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A -Ideale.- 47. Einordnung des A -Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.


andere Formate
weitere Titel der Reihe