Bültmann & Gerriets
How To Build A Brain
A Neural Architecture for Biological Cognition
von Chris Eliasmith
Verlag: Oxford University Press
Reihe: Oxford Cognitive Models and Ar
Taschenbuch
ISBN: 978-0-19-026212-9
Erschienen am 01.06.2015
Sprache: Englisch
Format: 254 mm [H] x 178 mm [B] x 25 mm [T]
Gewicht: 887 Gramm
Umfang: 476 Seiten

Preis: 49,90 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 5. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

49,90 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

How to Build a Brain provides a guided exploration of a new cognitive architecture that takes biological detail seriously while addressing cognitive phenomena. The Semantic Pointer Architecture (SPA) introduced in this book provides a set of tools for constructing a wide range of biologically constrained perceptual, cognitive, and motor models.



Chris Eliasmith is Canada Research Chair in Theoretical Neuroscience at the University of Waterloo.



  • 1 The science of cognition

  • 1.1 The last 50 years

  • 1.2 How we got here

  • 1.3 Where we are

  • 1.4 Questions and answers

  • 1.5 Nengo: An introduction

  • Part I. How to build a brain

  • 2 An introduction to brain building

  • 2.1 Brain parts

  • 2.2 A framework for building a brain

  • 2.2.1 Representation

  • 2.2.2 Transformation

  • 2.2.3 Dynamics

  • 2.2.4 The three principles

  • 2.3 Levels

  • 2.4 Nengo: Neural representation

  • 3 Biological cognition - Semantics

  • 3.1 The semantic pointer hypothesis

  • 3.2 What is a semantic pointer?

  • 3.3 Semantics: An overview

  • 3.4 Shallow semantics

  • 3.5 Deep semantics for perception

  • 3.6 Deep semantics for action

  • 3.7 The semantics of perception and action

  • 3.8 Nengo: Neural computations

  • 4 Biological cognition - Syntax

  • 4.1 Structured representations

  • 4.2 Binding without neurons

  • 4.3 Binding with neurons

  • 4.4 Manipulating structured representations

  • 4.5 Learning structural manipulations

  • 4.6 Clean-up memory and scaling

  • 4.7 Example: Fluid intelligence

  • 4.8 Deep semantics for cognition

  • 4.9 Nengo: Structured representations in neurons

  • 5 Biological cognition - Control

  • 5.1 The flow of information

  • 5.2 The basal ganglia

  • 5.3 Basal ganglia, cortex, and thalamus

  • 5.4 Example: Fixed sequences of actions

  • 5.5 Attention and the routing of information

  • 5.6 Example: Flexible sequences of actions

  • 5.7 Timing and control

  • 5.8 Example: The Tower of Hanoi

  • 5.9 Nengo: Question answering

  • 6 Biological cognition - Memory and learning

  • 6.1 Extending cognition through time

  • 6.2 Working memory

  • 6.3 Example: Serial list memory

  • 6.4 Biological learning

  • 6.5 Example: Learning new actions

  • 6.6 Example: Learning new syntactic manipulations

  • 6.7 Nengo: Learning

  • 7 The Semantic Pointer Architecture (SPA)

  • 7.1 A summary of the SPA

  • 7.2 A SPA unified network

  • 7.3 Tasks

  • 7.3.1 Recognition

  • 7.3.2 Copy drawing

  • 7.3.3 Reinforcement learning

  • 7.3.4 Serial working memory

  • 7.3.5 Counting

  • 7.3.6 Question answering

  • 7.3.7 Rapid variable creation

  • 7.3.8 Fluid reasoning

  • 7.3.9 Discussion

  • 7.4 A unified view: Symbols and probabilities

  • 7.5 Nengo: Advanced modeling methods

  • Part II. Is that how you build a brain?

  • 8 Evaluating cognitive theories

  • 8.1 Introduction

  • 8.2 Core Cognitive Criteria (CCC)

  • 8.2.1 Representational structure

  • 8.2.1.1 Systematicity

  • 8.2.1.2 Compositionality

  • 8.2.1.3 Productivity

  • 8.2.1.4 The massive binding problem

  • 8.2.2 Performance concerns

  • 8.2.2.1 Syntactic generalization

  • 8.2.2.2 Robustness

  • 8.2.2.3 Adaptability

  • 8.2.2.4 Memory

  • 8.2.2.5 Scalability

  • 8.2.3 Scientific merit

  • 8.2.3.1 Triangulation

  • 8.2.3.2 Compactness

  • 8.3 Conclusion

  • 8.4 Nengo Bonus: How to build a brain - A practical guide

  • 9 Theories of cognition

  • 9.1 The state of the art

  • 9.1.1 ACT-R

  • 9.1.2 Synchrony-based approaches

  • 9.1.3 Neural Blackboard Architecture (NBA)

  • 9.1.4 The Integrated Connectionist/Symbolic Architecture (ICS)

  • 9.1.5 Leabra

  • 9.1.6 Dynamic Field Theory (DFT)

  • 9.2 An evaluation

  • 9.2.1 Representational structure

  • 9.2.2 Performance concerns

  • 9.2.3 Scientific merit

  • 9.2.4 Summary

  • 9.3 The same...

  • 9.4 ...but different

  • 9.5 The SPA versus the SOA

  • 10 Consequences and challenges

  • 10.1 Representation

  • 10.2 Concepts

  • 10.3 Inference

  • 10.4 Dynamics

  • 10.5 Challenges

  • 10.6 Conclusion

  • A Mathematical notation and overview

  • A.1 Vectors

  • A.2 Vector spaces

  • A.3 The dot product

  • A.4 Basis of a vector space

  • A.5 Linear transformations on vectors

  • A.6 Time derivatives for dynamics

  • B Mathematical derivations for the NEF

  • B.1 Representation

  • B.1.1 Encoding

  • B.1.2 Decoding

  • B.2 Transformation

  • B.3 Dynamics

  • C Further details on deep semantic models

  • C.1 The perceptual model

  • C.2 The motor model

  • D Mathematical derivations for the SPA

  • D.1 Binding and unbinding HRRs

  • D.2 Learning high-level transformations

  • D.3 Ordinal serial encoding model

  • D.4 Spike-timing dependent plasticity

  • D.5 Number of neurons for representing structure

  • E SPA model details

  • E.1 Tower of Hanoi

  • Bibliography

  • Index


weitere Titel der Reihe