Bültmann & Gerriets
Statistical Mechanics: Entropy, Order Parameters, and Complexity
von James P Sethna
Verlag: Oxford University Press
Reihe: Oxford Master Physics
Gebundene Ausgabe
ISBN: 978-0-19-886524-7
Auflage: 2nd edition
Erschienen am 26.03.2021
Sprache: Englisch
Format: 249 mm [H] x 196 mm [B] x 30 mm [T]
Gewicht: 1247 Gramm
Umfang: 496 Seiten

Preis: 103,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 19. Mai in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

A new and updated edition of the successful Statistical Mechanics: Entropy, Order Parameters and Complexity from 2006. Statistical mechanics is a core topic in modern physics. Innovative, fresh introduction to the broad range of topics of statistical mechanics today, by brilliant teacher and renowned researcher.



James P. Sethna is professor of physics at Cornell University. Sethna has used statistical mechanics to make substantive contributions in a bewildering variety of subjects -- mathematics (dynamical systems and the onset of chaos), engineering (microstructure, plasticity, and fracture), statistics (information geometry, sloppy models, low-dimensional embeddings), materials science (glasses and spin glasses, liquid crystals, crackling noise, superconductivity), and popular culture (mosh pit dynamics and zombie outbreak epidemiology). He has collected cool, illustrative problems from students and colleagues over the decades, which inspired this textbook.



  • Preface

  • Contents

  • List of figures

  • What is statistical mechanics?

  • 1.1: Quantum dice and coins

  • 1.2: Probability distributions

  • 1.3: Waiting time paradox

  • 1.4: Stirling's formula

  • 1.5: Stirling and asymptotic series

  • 1.6: Random matrix theory

  • 1.7: Six degrees of separation

  • 1.8: Satisfactory map colorings

  • 1.9: First to fail: Weibull

  • 1.10: Emergence

  • 1.11: Emergent vs. fundamental

  • 1.12: Self-propelled particles

  • 1.13: The birthday problem

  • 1.14: Width of the height distribution

  • 1.15: Fisher information and Cram¿er-Rao

  • 1.16: Distances in probability space

  • Random walks and emergent properties

  • 2.1: Random walk examples: universality and scale invariance

  • 2.2: The diffusion equation

  • 2.3: Currents and external forces

  • 2.4: Solving the diffusion equation

  • Temperature and equilibrium

  • 3.1: The microcanonical ensemble

  • 3.2: The microcanonical ideal gas

  • 3.3: What is temperature?

  • 3.4: Pressure and chemical potential

  • 3.5: Entropy, the ideal gas, and phase-space refinements

  • Phase-space dynamics and ergodicity

  • 4.1: Liouville's theorem

  • 4.2: Ergodicity

  • Entropy

  • 5.1: Entropy as irreversibility: engines and the heat death of the Universe

  • 5.2: Entropy as disorder

  • 5.3: Entropy as ignorance: information and memory

  • Free energies

  • 6.1: The canonical ensemble

  • 6.2: Uncoupled systems and canonical ensembles

  • 6.3: Grand canonical ensemble

  • 6.4: What is thermodynamics?

  • 6.5: Mechanics: friction and fluctuations

  • 6.6: Chemical equilibrium and reaction rates

  • 6.7: Free energy density for the ideal gas

  • Quantum statistical mechanics

  • 7.1: Mixed states and density matrices

  • 7.2: Quantum harmonic oscillator

  • 7.3: Bose and Fermi statistics

  • 7.4: Non-interacting bosons and fermions

  • 7.5: Maxwell-Boltzmann 'quantum' statistics

  • 7.6: Black-body radiation and Bose condensation

  • 7.7: Metals and the Fermi gas

  • Calculation and computation

  • 8.1: The Ising model

  • 8.2: Markov chains

  • 8.3: What is a phase? Perturbation theory

  • Order parameters, broken symmetry, and topology

  • 9.1: Identify the broken symmetry

  • 9.2: Define the order parameter

  • 9.3: Examine the elementary excitations

  • 9.4: Classify the topological defects

  • Correlations, response, and dissipation

  • 10.1: Correlation functions: motivation

  • 10.2: Experimental probes of correlations

  • 10.3: Equal-time correlations in the ideal gas

  • 10.4: Onsager's regression hypothesis and time correlations

  • 10.5: Susceptibility and linear response

  • 10.6: Dissipation and the imaginary part

  • 10.7: Static susceptibility

  • 10.8: The fluctuation-dissipation theorem

  • 10.9: Causality and Kramers-Kr¿onig

  • Abrupt phase transitions

  • 11.1: Stable and metastable phases

  • 11.2: Maxwell construction

  • 11.3: Nucleation: critical droplet theory

  • 11.4: Morphology of abrupt transitions

  • Continuous phase transitions

  • 12.1: Universality

  • 12.2: Scale invariance

  • 12.3: Examples of critical points

  • A Appendix: Fourier methods

  • A.1: Fourier conventions

  • A.2: Derivatives, convolutions, and correlations

  • A.3: Fourier methods and function space

  • A.4: Fourier and translational symmetry

  • References

  • Index


andere Formate
weitere Titel der Reihe