Solitons are a well-known and intriguing aspect of nonlinear behavior in a continuous system such as a fluid: a wave propagates through the medium without distortion. Liquid crystals are highly ordered systems without a rigid, long-range structure. Solitons in liquid crystals (sometimes referred to as "walls") have a wide variety of remarkable properties that are becoming important for practical applications such as electroluminescent display. This book, the first review of the subject to be published, contains not only surveys of the existing literature, but presents new results as well.
Dr. Jenny Amelingmeyer ist wissenschaftliche Mitarbeiterin am Fachgebiet Technologiemanagement und Marketing an der TU Darmstadt.
1 Introduction.- 1.1 Liquid Crystal Phases.- 1.2 Solitons in Liquid Crystals.- References.- 2 Solitons and Field Induced Solitons in Liquid Crystals.- 2.1 Introduction.- 2.2 Solitons.- 2.3 Soliton Equations.- 2.4 Constructing Soliton Equations.- 2.5 Methods of Solving Soliton Equations.- 2.6 Formation of Solitons.- 2.7 Magnetic Field Induced Solitons in Nematics.- 2.8 Electric Field Induced Solitons in Liquid Crystals.- 2.9 Conclusions.- References.- 3 Solitons in Shearing Liquid Crystals.- 3.1 Introduction.- 3.2 Steady Uniform Shear I: One-Dimensional Case.- 3.3 Steady Uniform Shear II: Boundary Effects.- 3.4 Unsteady Uniform Shear.- 3.5 Steady Nonuniform Shear I: Linear Cell.- 3.6 Steady Nonuniform Shear II: Radial Cell.- 3.7 Conclusions.- References.- 4 Some Nonlinear Problems in Anisotropic Systems.- 4.1 Introduction.- 4.2 Nonlinear Aspects of Static Properties of Liquid Crystals.- 4.3 Nonlinear Macroscopic Dynamics of Liquid Crystals.- 4.4 Perspectives.- 4.5 Conclusions.- References.- 5 Solitary Waves in Ferroelectric Liquid Crystals.- 5.1 Introduction.- 5.2 Equations of Motion in One Dimension.- 5.3 Wave Fronts in Infinite Systems.- 5.4 Director Reorientation in Finite Domains with Fixed Boundaries.- 5.5 Structures with Finite Interface Energies.- 5.6 Conclusions.- References.- 6 Frustrated Smectics.- 6.1 Introduction.- 6.2 The Physics of Polar Smectics.- 6.3 Electric Properties of the Incommensurate Smectics.- 6.4 Escape from Incommensurability.- 6.5 Conclusions.- References.- 7 Soft Walls and Orientational Singularities in Two-Dimensional Liquid Crystal Films.- 7.1 Background.- 7.2 Experimental Techniques.- 7.3 Soft Tilt Director Walls in Ferroelectric Smectic C* Films.- 7.4 Characteristic Orientational Singularities in Tilted Hexatic Films.- 7.5 Concluding Remarks.- References.- 8 Charged Twist Walls in Nematic Liquid Crystals.- 8.1 Introduction.- 8.2 Experiment.- 8.3 Model.- 8.4 Conclusions.- References.- 9 Localized Instabilities in the Convection of Nematic Liquid Crystals.- 9.1 Introduction.- 9.2 Localized Instabilities in the Evolution to the Chaotic State.- 9.3 Theoretical Model: The Amplitude Equation.- 9.4 Convective Instabilities in Nematics Under A.C. Electric Fields.- 9.5 Sequence of Homogeneous Stationary States.- 9.6 Topology of Dislocations.- 9.7 Experimental Techniques.- 9.8 Nucleation of Dislocations in the Convective Rolls.- 9.9 Phase Propagation and Localization of a Convective Structure.- 9.10 Propagation of Solitary Rolls.- References.- 10 Solitons and Commensurate-Incommensurate Phase Transitions in Ferroelectric Smectics.- 10.1 Introduction.- 10.3 The Chiral Smectic C-Smectic CPhase Transition.- 10.4 Incommensurate and Rippled Phases Without Lifshitz Invariant.- 10.5 Summary.- References.- Author Index.