Bültmann & Gerriets
Noncommutative Differential Geometry and Its Applications to Physics
Proceedings of the Workshop at Shonan, Japan, June 1999
von Yoshiaki Maeda, Hitoshi Moriyoshi, Satoshi Watamura, Daniel Sternheimer
Verlag: Springer Netherlands
Reihe: Mathematical Physics Studies Nr. 23
Gebundene Ausgabe
ISBN: 978-0-7923-6930-1
Auflage: 2001
Erschienen am 31.03.2001
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 23 mm [T]
Gewicht: 658 Gramm
Umfang: 328 Seiten

Preis: 160,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 23. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments.
However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium.
Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.



Methods Of Equivariant Quantization.- Application of Noncommutative Differential Geometry on Lattice to Anomaly Analysis in Abelian Lattice Gauge Theory.- Geometrical Structures on Noncommutative Spaces.- A Relation Between Commutative and Noncommutative Descriptions of D-Branes.- Intersection Numbers On The Moduli Spaces Of Stable Maps In Genus 0.- D-Brane Actions On Kähler Manifolds.- On The Projective Classification Of The Modules Of Differential Operators On ?m.- An Interpretation Of Schouten-Nijenhuis Bracket.- Remarks On The Characteristic Classes Associated With The Group Of Fourier Integral Operators.- C*-Algebraic Deformation And Index Theory.- Singular Systems Of Exponential Functions.- Determinants Of Elliptic Boundary Problems In Quantum Field Theory.- On Geometry Of Non-Abelian Duality.- Weyl Calculus And Wigner Transform On The Poincaré Disk.- Lectures On Graded Differential Algebras And Noncommutative Geometry.


andere Formate
weitere Titel der Reihe