Bültmann & Gerriets
Geometric Mechanics on Riemannian Manifolds
Applications to Partial Differential Equations
von Ovidiu Calin, Der-Chen Chang
Verlag: Birkhauser Boston
Reihe: Applied and Numerical Harmonic
Gebundene Ausgabe
ISBN: 978-0-8176-4354-6
Auflage: 2005 edition
Erschienen am 25.10.2004
Sprache: Englisch
Format: 242 mm [H] x 162 mm [B] x 19 mm [T]
Gewicht: 578 Gramm
Umfang: 278 Seiten

Preis: 104,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 1. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

104,50 €
merken
zum E-Book (PDF) 90,94 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger's, Einstein's and Newton's equations. Historically, problems in these areas were approached using the Fourier transform or path integrals, although in some cases (e.g., the case of quartic oscillators) these methods do not work. New geometric methods are introduced in the work that have the advantage of providing quantitative or at least qualitative descriptions of operators, many of which cannot be treated by other methods. And, conservation laws of the Euler-Lagrange equations are employed to solve the equations of motion qualitatively when quantitative analysis is not possible.

Main topics include: Lagrangian formalism on Riemannian manifolds; energy momentum tensor and conservation laws; Hamiltonian formalism; Hamilton-Jacobi theory; harmonic functions, maps, and geodesics; fundamental solutions for heat operators with potential; and a variational approach to mechanical curves. The text is enriched with good examples and exercises at the end of every chapter.

Geometric Mechanics on Riemannian Manifolds is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas.



Introductory Chapter.- Laplace Operators on Riemannian Manifolds.- Lagrangian Formalism on Riemannian Manifolds.- Harmonic Maps from a Lagrangian Viewpoint.- Conservation Theorems.- Hamiltonian Formalism.- Hamilton-Jacobi Theory.- Minimal Hypersurfaces.- Radially Symmetric Spaces.- Fundamental Solutions for Heat Operators with Potentials.- Fundamental Solutions for Elliptic Operators.- Mechanical Curves.


andere Formate
weitere Titel der Reihe