This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and their use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory.
Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses. The self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.
ANHA Series Preface.- Preface.- General Notation.- Part I. A Primer on Functional Analysis .- Banach Spaces and Operator Theory.- Functional Analysis.- Part II. Bases and Frames.- Unconditional Convergence of Series in Banach and Hilbert Spaces.- Bases in Banach Spaces.- Biorthogonality, Minimality, and More About Bases.- Unconditional Bases in Banach Spaces.- Bessel Sequences and Bases in Hilbert Spaces.- Frames in Hilbert Spaces.- Part III. Bases and Frames in Applied Harmonic Analysis.- The Fourier Transform on the Real Line.- Sampling, Weighted Exponentials, and Translations.- Gabor Bases and Frames.- Wavelet Bases and Frames.- Part IV. Fourier Series.- Fourier Series.- Basic Properties of Fourier Series.- Part V. Appendices.- Lebesgue Measure and Integration.- Compact and Hilbert-Schmidt Operators.- Hints for Exercises.- Index of Symbols.- References.- Index.