Bültmann & Gerriets
An Introduction to Finite Tight Frames
von Shayne F. D. Waldron
Verlag: Springer New York
Reihe: Applied and Numerical Harmonic Analysis
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-0-8176-4815-2
Auflage: 1st ed. 2018
Erschienen am 03.02.2018
Sprache: Englisch
Umfang: 587 Seiten

Preis: 64,19 €

Inhaltsverzeichnis
Klappentext
Biografische Anmerkung

Preface.- Tight Frames.- Frames.- Canonical Coordinates for Vector Spaces and Affine Spaces.- Combining and Decomposing Frames.- Variational Characterizations of Tight Frames.- The Algebraic Variet of Tight Frames.- Projective Unitary Equivalence and Fusion Frames.- Symmetries of Tight Frames.- Group Frames.- Harmonic Frames.- Equiangular and Grassmannian Frames.- Tight Frames Generated by Nonabelian Groups.- Weyl-Heisenberg SICs.- Tight Frames of Orthogonal Polynomials on the Simplex.- Continuous Tight Frames for Finite Dimensional Spaces.- Solutions.- References.- Index.-



This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing.

Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook for a graduate course or seminar involving finite frames. The self-contained, user-friendly presentation also makes the work useful as a self-study resource or reference for graduate students, instructors, researchers, and practitioners in pure and applied mathematics, engineering, mathematical physics, and signal processing.



Shayne Waldron is a senior lecturer in the Mathematics Department of the University of Auckland. He received his Ph.D. in Mathematics from the University of Wisconsin¿Madison and served as a postdoctoral fellow at the Israel Institute of Technology. His areas of research include approximation theory and numerical analysis and the construction of tight frames from abstract groups, 


andere Formate
weitere Titel der Reihe