Bültmann & Gerriets
Generative Adversarial Networks and Deep Learning
Theory and Applications
von Pranav D Pathak, Sachin R Sakhare, Roshani Raut
Verlag: Chapman and Hall/CRC
Gebundene Ausgabe
ISBN: 978-1-032-06810-7
Erschienen am 10.04.2023
Sprache: Englisch
Format: 260 mm [H] x 183 mm [B] x 17 mm [T]
Gewicht: 627 Gramm
Umfang: 224 Seiten

Preis: 200,60 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 30. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

1. Generative Adversarial Networks and Its Use cases. 2. Image-to-Image Translation using Generative Adversarial Networks. 3. Image Editing Using Generative Adversarial Network. 4. Generative Adversarial Networks for Video to Video Translation. 5. Security Issues in Generative Adversarial Networks. 6. Generative Adversarial Networks aided Intrusion Detection System. 7. Textual Description to Facial Image Generation. 8. An application of Generative Adversarial Network in Natural Language Generation. 9. Beyond image synthesis: GAN and Audio: It covers how GAN will be used for audio synthesis along with its applications. 10. A Study on the Application Domains of Electroencephalogram for the Deep Learning-Based Transformative Healthcare. 11. Emotion Detection using Generative Adversarial Network. 12. Underwater Image Enhancement Using Generative Adversarial Network. 13. Towards GAN Challenges and Its Optimal Solutions.



This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio.
A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc.
Features:
Presents a comprehensive guide on how to use GAN for images and videos.
Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN
Highlights the inclusion of gaming effects using deep learning methods
Examines the significant technological advancements in GAN and its real-world application.
Discusses as GAN challenges and optimal solutions
The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning.
The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum


andere Formate