Bültmann & Gerriets
Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques
von Chander Prakash, Hitesh Vasudev
Verlag: CRC Press
Reihe: Sustainable Manufacturing Technologies
Gebundene Ausgabe
ISBN: 978-1-032-38767-3
Erschienen am 05.07.2023
Sprache: Englisch
Format: 240 mm [H] x 161 mm [B] x 16 mm [T]
Gewicht: 481 Gramm
Umfang: 206 Seiten

Preis: 224,10 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 12. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Biografische Anmerkung
Klappentext

1. Application of Wear -Resistant Laser Claddings. 2. Application of Corrosion-Resistant Laser Claddings. 3. A Comprehensive Analysis of Recent Advancements and Future Prospects in Laser-Based Additive Manufacturing Techniques. 4. Microstructure and Characteristics of Alloys Produced by Additive Laser-Based Manufacturing Technique. 5. Laser Surface Engineering: State of the Art, Applications and Challenges. 6. Laser Surface Engineering: Case Studies. 7. Applications of Laser Technology for Processing and Post-Treatments of Powders and Coatings. 8. Sustainability Issues in Laser-Based Additive Manufacturing.



Prof. Hitesh Vasudev, is currently working as professor in the School of Mechanical Engineering and Division of Research and Development at Lovely Professional University, Phagwara, India. He received a Ph.D. in Mechanical Engineering from Guru Nanak Dev Engineering College (affiliated to IKGPTU-Jalandhar), Ludhiana, India in 2018. His area of research is thermal spray coatings, especially for the development of new materials used for hightemperature erosion and oxidation resistance and microwave processing of materials.

He has contributed extensively in thermal spray coatings in repute journals including Surface Coatings and Technology, Materials Today Communications, Engineering Failure Analysis, Journal of Cleaner Production, Surface Topography: Metrology and Properties, Journal of Failure Prevention and Control and International Journal of Surface Engineering and Interdisciplinary Materials Science under the flagship of various publication groups such as Elsevier, Taylor & Francis Group, Springer Nature, IGI Global, and InTech Open. Moreover, he is a dedicated reviewer of reputed journals such as Surface Coatings and Technology, Ceramics International, Journal of Material Engineering Performance, Engineering Failure Analysis, Surface Topography: Metrology and Properties, Material Research Express, Engineering Research Express and IGI Global. He has authored more than 30 international publications in various international journals and conferences.

He has published 15 chapters in various books related to surface engineering and manufacturing processes. He has also published a unique patent in the field of thermal spraying. He has teaching experience of more than 8 years. He received a "Research Excellence Award" in 2019, 2020, and 2021 at Lovely Professional University, Phagwara, India. He has organized a national conference and has participated in many international conferences.

Dr. Chander Prakash is a professor and dean in the Division of Research & Development/School of Mechanical Engineering at Lovely Professional University, India. He graduated from the Panjab University Chandigarh in 2016 with Ph.D. in Mechanical Engineering. He is also an Adjunct Professor (Honorary position) at the Institute for Computational Science, Ton Duc Thang University, Vietnam.

He is a dedicated teacher who embraces studentcentric approaches, providing experiential learning to his students. He is a passionate researcher with diversified research interests - developing materials for biomedical and healthcare applications, additive manufacturing, and developing and exploring new cost-effective manufacturing technologies for biomedical industries. To date, he has published more than 325 scientific articles in various peer-reviewed reputed top-notch journals, conferences, and books in Materials Science and Manufacturing.

Dr. Prakash is a highly cited researcher at the international level, and he has 5513 citations, an H-index of 41, and an i-10 index of 123. He is one of the Top 1% of leading scientists in Mechanical and Aerospace Engineering in India, as per Research.com. He holds the 38th rank in India and the 1590th rank in the world. He also consistently appeared in the top 2% of researchers as per Stanford Study in 2021 and 2022.

Dr. Prakash edited/authored 25 books, serving as a series editor of 2 books, serving as guest editor, and serving as an editorial board member of journals. He is working on research commercialization and has published 18 patents. His four patents were granted. Dr. Prakash raised a fund of Rs. 21.50 Lakhs for "Wire Arc Additive Manufacturing for Industrial Application" under the PRISM scheme of the Ministry of Science & Technology, India in 2022. He received a grant of Rs. 3.00 Lakhs from UKIERI-DST for Partnership Development Workshops on "Medical Additive Manufacturing Cost-effective and Sustainable Solutions for Innovative Development of High-Value Added Products and Services Testing" in collaboration with University of Greenwich, UK and Cardiff University, UK.

Dr. Prakash has organized three series of the signature International Conference on Functional Materials Manufacturing and Performances (ICFMMP) in 2019, 2021, and 2022. Recognizing his contribution to research and development, Lovely Professional University awarded him Research Excellence Award for the best and most highly productive researcher in 2019, 2020, and 2021.



Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques discusses the main mechanism behind the surface degradation of structural components in strenuous environments.


andere Formate
weitere Titel der Reihe