Bültmann & Gerriets
Linear Algebraic Groups and Finite Groups of Lie Type
von Gunter Malle, Donna Testerman
Verlag: Cambridge University Press
Gebundene Ausgabe
ISBN: 978-1-107-00854-0
Erschienen am 30.10.2013
Sprache: Englisch
Format: 235 mm [H] x 157 mm [B] x 22 mm [T]
Gewicht: 624 Gramm
Umfang: 324 Seiten

Preis: 71,70 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

71,70 €
merken
zum E-Book (PDF) 81,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis
Biografische Anmerkung

The first textbook on the subgroup structure, in particular maximal subgroups, for both algebraic and finite groups of Lie type.



Preface; List of tables; Notation; Part I. Linear Algebraic Groups: 1. Basic concepts; 2. Jordan decomposition; 3. Commutative linear algebraic groups; 4. Connected solvable groups; 5. G-spaces and quotients; 6. Borel subgroups; 7. The Lie algebra of a linear algebraic group; 8. Structure of reductive groups; 9. The classification of semisimple algebraic groups; 10. Exercises for Part I; Part II. Subgroup Structure and Representation Theory of Semisimple Algebraic Groups: 11. BN-pairs and Bruhat decomposition; 12. Structure of parabolic subgroups, I; 13. Subgroups of maximal rank; 14. Centralizers and conjugacy classes; 15. Representations of algebraic groups; 16. Representation theory and maximal subgroups; 17. Structure of parabolic subgroups, II; 18. Maximal subgroups of classical type simple algebraic groups; 19. Maximal subgroups of exceptional type algebraic groups; 20. Exercises for Part II; Part III. Finite Groups of Lie Type: 21. Steinberg endomorphisms; 22. Classification of finite groups of Lie type; 23. Weyl group, root system and root subgroups; 24. A BN-pair for GF; 25. Tori and Sylow subgroups; 26. Subgroups of maximal rank; 27. Maximal subgroups of finite classical groups; 28. About the classes CF1, ¿, CF7 and S; 29. Exceptional groups of Lie type; 30. Exercises for Part III; Appendix A. Root systems; Appendix B. Subsystems; Appendix C. Automorphisms of root systems; References; Index.



Gunter Malle is a Professor in the Department of Mathematics at the University of Kaiserslautern, Germany.


andere Formate