Max L. Berkowitz, PhD, is a Professor in the Department of Chemistry at the University of North Carolina, Chapel Hill. He earned his PhD from the Weizmann Institute of Science. His research interests include studies of the structural and dynamical properties of aqueous ionic solutions, structure and dynamics of biomembranes, and influence of cavitation effect on biomembranes. He has given numerous invited talks and presentations and is an author or a co-author of more than150 peer-reviewed journal publications. He is a Fellow of the American Physical Society.
Since molecular processes in membranes occur on a multitude of spatial and time scales, molecular simulations of membranes can also serve as a testing ground for use of multi-scale simulation techniques. This book addresses some of the important issues related to understanding properties and behavior of model biological membranes
Contents
Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
About the Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1. Force Fields for Biomembranes Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Alexander P. Lyubartsev and Alexander L. Rabinovich
2. Mesoscopic Particle-Based Modeling of Self-Assembled Lipid Membranes . . . . . . . . . . . . . . 27
Mohamed Laradji and Maria Maddalena Sperotto
3. Continuum Elastic Description of Processes in Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Alexander J. Sodt
4. Water between Membranes: Structure and Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Sotiris Samatas, Carles Calero, Fausto Martelli, and Giancarlo Franzese
5. Simulation Approaches to Short-Range Interactions between Lipid Membranes . . . . . . . . . . 89
Matej Kanduc, Alexander Schlaich, Bartosz Kowalik, Amanuel Wolde-Kidan,
Roland R. Netz, and Emanuel Schneck
6. Free-Energy Calculations of Pore Formation in Lipid Membranes . . . . . . . . . . . . . . . . . . . . 109
N. Awasthi and J. S. Hub
7. Free Energy Calculation of Membrane Translocation: What Works When, and Why?. . . . . 125
Nihit Pokhrel and Lutz Maibaum
8. Theories and Algorithms for Molecular Permeation through Membranes. . . . . . . . . . . . . . . 145
Alfredo E. Cardenas and Ron Elber
9. Nanoparticle-Membrane Interactions: Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
G. Rossi, S. Salassi, F. Simonelli, A. Bartocci, and L. Monticelli
10. Simulations of Membranes Containing General Anesthetics . . . . . . . . . . . . . . . . . . . . . . . . . 177
Pál Jedlovszky
11. Cation-Mediated Nanodomain Formation in Mixed Lipid Bilayers . . . . . . . . . . . . . . . . . . . 199
Sai J. Ganesan, Hongcheng Xu, and Silvina Matysiak
12. Molecular Dynamics Simulations of Gram-Negative Bacterial Membranes . . . . . . . . . . . . 213
Syma Khalid, Graham Saunders, and Taylor Haynes
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223