Bültmann & Gerriets
Mathematics for the Physical Sciences
von James B. Seaborn
Verlag: Springer New York
Hardcover
ISBN: 978-1-4419-2959-4
Auflage: Softcover reprint of the original 1st ed. 2002
Erschienen am 12.12.2011
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 15 mm [T]
Gewicht: 400 Gramm
Umfang: 260 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 11. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

1. A Review / 2. Vectors / 3. Vector Calculus / 4. Complex Numbers / 5. Differential Equations / 6. Partial Differential Equations / 7. Eigenvalue Problems / 8. Orthogonal Functions / 9. Matrix Formulation of the Eigenvalue Problem / 10. Variational Principles



This book is intended to provide a mathematical bridge from a general physics course to intermediate-level courses in classical mechanics, electricity and mag­ netism, and quantum mechanics. The book begins with a short review of a few topics that should be familiar to the student from a general physics course. These examples will be used throughout the rest of the book to provide physical con­ texts for introducing the mathematical applications. The next two chapters are devoted to making the student familiar with vector operations in algebra and cal­ culus. Students will have already become acquainted with vectors in the general physics course. The notion of magnetic flux provides a physical connection with the integral theorems of vector calculus. A very short chapter on complex num­ bers is sufficient to supply the needed background for the minor role played by complex numbers in the remainder of the text. Mathematical applications in in­ termediate and advanced undergraduate courses in physics are often in the form of ordinary or partial differential equations. Ordinary differential equations are introduced in Chapter 5. The ubiquitous simple harmonic oscillator is used to il­ lustrate the series method of solving an ordinary, linear, second-order differential equation. The one-dimensional, time-dependent SchrOdinger equation provides an illus­ tration for solving a partial differential equation by the method of separation of variables in Chapter 6.


andere Formate