Bültmann & Gerriets
Fields, Flows and Waves
An Introduction to Continuum Models
von David F. Parker
Verlag: Springer London
Reihe: Springer Undergraduate Mathematics Series
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4471-0019-5
Auflage: 2003
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 270 Seiten

Preis: 37,44 €

37,44 €
merken
zum Hardcover 37,44 €
Inhaltsverzeichnis
Klappentext

1. The Continuum Description.- 1.1 Densities and Fluxes.- 1.2 Conservation and Balance Laws in One Dimension.- 1.3 Heat Flow.- 1.4 Steady Radial Flow in Two Dimensions.- 1.5 Steady Radial Flow in Three Dimensions.- 2. Unsteady Heat Flow.- 2.1 Thermal Energy.- 2.1.1 Heat Balance in One-dimensional Problems.- 2.1.2 Some Special Solutions of Equation (2.3).- 2.2 Effects of Heat Supply.- 2.3 Unsteady, Spherically Symmetric Heat Flow.- 3. Fields and Potentials.- 3.1 Gradient of a Scalar.- 3.1.1 Some Applications.- 3.2 Gravitational Potential.- 3.2.1 Special Properties of the Function ?=r?1.- 3.3 Continuous Distributions of Mass.- 3.4 Electrostatics.- 3.4.1 Gauss's Law of Flux.- 3.4.2 Charge-free Regions.- 3.4.3 Surface Charge Density.- 4. Laplace's Equation and Poisson's Equation.- 4.1 The Ubiquitous Laplacian.- 4.2 Separable Solutions.- 4.3 Poisson's Equation.- 4.4 Dipole Solutions.- 4.4.1 Uses of Dipole Solutions to ?2?=0.- 4.4.2 Spherical Inclusions.- 5. Motion of an Elastic String.- 5.1 Tension and Extension; Kinematics and Dynamics.- 5.1.1 Dynamics.- 5.2 Planar Motions.- 5.2.1 Small Transverse Motions.- 5.2.2 Longitudinal Motions.- 5.3 Properties of the Wave Equation.- 5.3.1 Standing Waves.- 5.3.2 Superposition of Standing Waves.- 5.4 D'Alembert's Solution, Travelling Waves and Wave Reflections.- 5.4.1 Wave Reflections.- 5.5 Other One-dimensional Waves.- 5.5.1 Acoustic Vibrations in a' lUbe.- 5.5.2 Telegraphy and High-voltage Transmission.- 6. Fluid Flow.- 6.1 Kinematics and Streamlines.- 6.1.1 Some Important Examples of Steady Flow.- 6.2 Volume Flux and Mass Flux.- 6.2.1 Incompressible Fluids.- 6.2.2 Mass Conservation.- 6.3 Two-dimensional Flows of Incompressible Fluids.- 6.3.1 The Continuity Equation.- 6.3.2 Irrotational Flows and the Velocity Potential.- 6.3.3 The Stream Function.- 6.4 Pressure in a Fluid.- 6.4.1 Resultant Force.- 6.4.2 Hydrostatics and Archimedes' Principle.- 6.4.3 Momentum Density and Momentum Flux.- 6.5 Bernoulli's Equation.- 6.5.1 The Material (Advected) Derivative.- 6.5.2 Bernoulli's Equation and Dynamic Pressure.- 6.5.3 The Principle of Aerodynamic Lift.- 6.6 Three-dimensional, Incompressible Flows.- 6.6.1 The Continuity Equation.- 6.6.2 Irrotational Flows, the Velocity Potential and Laplace's Equation.- 7. Elastic Deformations.- 7.1 The Kinematics of Deformation.- 7.1.1 Deformation Gradient.- 7.1.2 Stretch and Rotation.- 7.2 Polar Decomposition.- 7.3 Stress.- 7.3.1 Traction Vectors.- 7.3.2 Components of Stress.- 7.3.3 Traction on a General Surface.- 7.4 Isotropic Linear Elasticity.- 7.4.1 The Constitutive Law.- 7.4.2 Stretching, Shear and Torsion.- 8. Vibrations and Waves.- 8.1 Wave Reflection and Refraction.- 8.1.1 Use of the Complex Exponential.- 8.1.2 Plane Waves.- 8.1.3 Reflection at a Rigid Wall.- 8.1.4 Refraction at an Interface.- 8.1.5 Total Internal Reflection.- 8.2 Guided Waves.- 8.2.1 Acoustic Waves in a Layer.- 8.2.2 Waveguides and Dispersion.- 8.3 Love Waves in Elasticity.- 8.4 Elastic Plane Waves.- 8.4.1 Elastic Shear Waves.- 8.4.2 Dilatational Waves.- 9. Electromagnetic VVaves and Light.- 9.1 Physical Background.- 9.1.1 The Origin of Maxwell's Equations.- 9.1.2 Plane Electromagnetic Waves.- 9.1.3 Reflection and Refraction of Electromagnetic Waves.- 9.2 Waveguides.- 9.2.1 Rectangular Waveguides.- 9.2.2 Circular Cylindrical Waveguides.- 9.2.3 An Introduction to Fibre Optics.- 10. Chemical and Biological Models.- 10.1 Diffusion of Chemical Species.- 10.1.1 Fick's Law of Diffusion.- 10.1.2 Self-similar Solutions.- 10.1.3 Travelling Wavefronts.- 10.2 Population Biology.- 10.2.1 Growth and Dispersal.- 10.2.2 Fisher's Equation and Self-limitation.- 10.2.3 Population-dependent Dispersivity.- 10.2.4 Competing Species.- 10.2.5 Diffusive Instability.- 10.3 Biological Waves.- 10.3.1 The Logistic Wavefront.- 10.3.2 Travelling Pulses and Spiral Waves.- Solutions.



This book serves as an introduction to the use of mathematics in describing collective phenomena in physics and biology. Derived from a course of innovative lectures, the book shows students early in their studies how many of the topics they have encountered - partial differential equations, differential equations, Fourier series, and linear algebra - are useful in constructing, analysing and interpreting phenomena present in the real world. Throughout, ideas are developed using worked examples and exercises with solution. The text does not assume a strong background in physics.


andere Formate
weitere Titel der Reihe