1 Liquid Crystalline State.- 1.1 Structure of Liquid Crystal Phases.- 1.1.1 Molecules.- 1.1.2 Thermotropic Mesophases Formed by Achiral Rod-Like Molecules.- 1.1.3 Thermotropic Chiral Mesophases.- 1.1.4 Mesophases of Disc-Like and Lath-Like Molecules.- 1.1.5 Polymer Liquid Crystals.- 1.1.6 Lyotropic Liquid Crystals.- 1.2 Mixtures.- 1.2.1 Nematic Eutectics.- 1.2.2 Reentrant Phases.- 1.2.3 Mixtures of Smectics.- 1.2.4 Nemato-Cholesteric Compositions.- 1.2.5 Ferroelectric Mixtures.- 1.3 Liquid Crystalline Materials.- 1.3.1 Chemical Classes.- 1.3.2 Chemical Structure and Transition Temperatures.- 1.3.3 Material.- 1.4 Direct Influence of an Electric Field on the Structure of Liquid Crystals.- 1.4.1 Field-Induced Shifts of the Phase Transition Temperatures.- 1.4.2 Influence of the Field on the Order Parameters.- 1.4.3 Field-Induced Changes in Symmetry.- References.- 2 Properties of the Materials.- 2.1 Dielectric Permittivity.- 2.1.1 Isotropic Liquids.- 2.1.2 Dielectric Anisotropy of Nematics.- 2.1.3 Nematic Mixtures.- 2.1.4 Other Phases.- 2.2 Electrical Conductivity.- 2.2.1 Dependence on Impurity Concentration.- 2.2.2 Conductivity Anisotropy.- 2.3 Optical Anisotropy and Dichroism.- 2.3.1 Optical Anisotropy.- 2.3.2 Dichroism.- 2.4 Viscoelastic Properties.- 2.4.1 Elasticity.- 2.4.2 Viscosity.- 2.4.3 Diffusion Coefficients.- References.- 3 Surface Phenomena.- 3.1 Structure of Surface Layers.- 3.1.1 Surface-Induced Changes in the Orientational Order Parameter.- 3.1.2 Surface-Induced Smectic Ordering.- 3.1.3 Polar Surface Order and Surface Polarization.- 3.2 Surface Energy.- 3.2.1 Wetting of a Solid Substrate.- 3.2.2 Surface Energy and Anchorage of a Nematic Liquid Crystal.- 3.2.3 Techniques for Measuring Anchoring Energies.- 3.3 Cells and Orientation.- 3.3.1 Electrooptical Cells.- 3.3.2 Liquid Crystal Orientation.- 3.3.3 Anchoring Transitions.- References.- 4 Electrooptical Effects Due to the Uniform Distortion of Nematic Liquid Crystals.- 4.1 Electrically Controlled Birefringence.- 4.1.1 Director Distribution.- 4.1.2 Tilted Directors at the Boundaries.- 4.1.3 Different Geometries. Simultaneous Action of Electric and Magnetic Fields.- 4.1.4 Effect of Electrical Conductivity.- 4.1.5 The Frederiks Transition for a Weak Anchoring at the Boundaries.- 4.1.6 Dynamics of the Frederiks Transition.- 4.1.7 The Frederiks Transition in Ferronematic Liquid Crystals.- 4.1.8 Optical Characteristics of the Electrically Controlled Birefringence Effect.- 4.2 Twist-Effect.- 4.2.1 Preparation of Twist Cells, Optical Properties at Zero Field.- 4.2.2 Transmission-Voltage Curve for Normal Light Incidence.- 4.2.3 Electrooptics of the Twist Cell for Oblique Incidence.- 4.2.4 Matrix Addressed Displays and Multiplexing Capability of Twist-Effect Materials.- 4.2.5 Dynamics of the Twist Effect.- 4.2.6 New Possibilities.- 4.3 Supertwist Effects.- 4.4 "Guest-Host" Effect.- 4.4.1 Change in Intensity of the Coloring.- 4.4.2 Colorimetry of "Guest-Host" Displays.- 4.4.3 Color Switching.- 4.4.4 Change in Fluorescence.- 4.5 The Flexoelectric Effect.- 4.5.1 Physical Reasons.- 4.5.2 Static Flexoelectric Distortion in Different Geometries; Determination of Flexoelectric Moduli.- 4.5.3 Dynamics of the Flexoelectric Effect.- 4.5.4 Microscopic Approach to Determination of the Flexoelectric Coefficients.- 4.6 Reflectivity in an Electric Field.- 4.6.1 Optical Properties of Nontwisted Nematic Layers.- 4.6.2 Various Techniques.- 4.7 Field Behavior of the Isotropic Phase.- 4.7.1 The Kerr Effect in the Isotropic Phase.- 4.7.2 Reorientation of Surface Quasi-Nematic Layers.- 4.8 Electric Field Effects in Nematic Polymers.- 4.8.1 Thermotropic Mesophases.- 4.8.2 Lyotropic Polymers 212.- 4.9 Electrooptical Properties of Polymer Dispersed Liquid Crystal Films.- References.- 5 Modulated and Nonuniform Structures in Nematic Liquid Crystals.- 5.1 Orientational Modulated Structures.- 5.1.1 Flexoelectric Domains.- 5.1.2 Dielectric Two-Dimensional Structure in the Frederiks Transition.- 5.1.3 Other Types of Modulated Structures.- 5.2 Electrohydrodynamic Modulated Structures.- 5.2.1 Low-Frequency Limit The Kapustin-Williams Domains.- 5.2.2 Different Types of Low-Frequency Electrohydrodynamics.- 5.2.3 Electrohydrodynamic Instability in Nematics with Oblique Director Orientation at the Boundaries.- 5.2.4 Electrohydrodynamic Instability: "Chevron" Mode.- 5.2.5 Anisotropic Instabilities for Different Field and Cell Configurations.- 5.2.6 Allowance for Flexoelectricity in Anisotropic Domain Structures.- 5.2.7 High-Frequency Inertia Anisotropic Mode.- 5.2.8 Modulated Structures with Large Periods in Homeotropic Nematics.- 5.2.9 "Isotropic" Mechanism of the Excitation of Electrohydrodynamic Domains.- 5.2.10 Instabilities in Homeotropic Nematics with ?? >0.- 5.2.11 Classification of Threshold Conditions for Different Instabilities in Nematics.- 5.2.12 Electrohydrodynamic Instabilities in Polymer Nematics.- 5.2.13 The Instabilities above the Threshold Voltage. Dynamic Scattering of Light.- 5.3 Nematics in Spatially Nonuniform Fields.- 5.3.1 Homeotropic Orientation.- 5.3.2 Homogeneous Alignment.- 5.3.3 Twist Cells.- References.- 6 Electrooptical Properties of Cholesterics and Nonferroelectric Smectics.- 6.1 The Pitch of Helix and the Optical Properties of Cholesterics.- 6.1.1 Textures.- 6.1.2 Methods of Measuring the Pitch.- 6.1.3 Optical Properties of Planar Cholesteric Textures.- 6.1.4 Diffraction on the Focal-Conic Texture.- 6.1.5 Pitch Dependence on Cell Thickness.- 6.2 Field-Induced Dielectric Instabilities of Cholesterics.- 6.2.1 Texture Transitions.- 6.2.2 Instability of the Planar Cholesteric Texture.- 6.2.3 Field Untwisting of a Cholesteric Helix.- 6.2.4 Electrically Switched Bistable Structures.- 6.3 Electrohydrodynamic Instabilities in Cholesterics.- 6.4 Flexoelectric Effects.- 6.4.1 Fast Linear-in-Field Rotation of the Cholesteric Helix.- 6.4.2 Flexoelectric Domains.- 6.5 Electrooptical Effects in Blue Phases.- 6.5.1 Optical Features.- 6.5.2 Field Behavior.- 6.6 Electric Field Behavior of Nonferroelectric Smectics.- 6.6.1 The Frederiks Transition in a Smectic A.- 6.6.2 Dielectrically Induced Texture Transitions.- 6.6.3 The Frederiks Transition in a Smectic C.- 6.6.4 Electrohydrodynamic Instabilities in Smectics A and C.- References.- 7 Ferroelectric Liquid Crystals.- 7.1 The Physical Properties of Ferroelectric Liquid Crystals. Methods of Measurement.- 7.1.1 The Symmetry.- 7.1.2 The Microscopic Approach. Ferroelectric Mixtures.- 7.1.3 Physical Parameters.- 7.1.4 Tilt Angle.- 7.1.5 Spontaneous Polarization.- 7.1.6 Flexoelectric Polarization.- 7.1.7 Rotational Viscosity.- 7.1.8 Helix Pitch.- 7.1.9 Dielectric Properties.- 7.1.10 Optical Properties.- 7.1.11 Total Free Energy with Allowance for Anchoring.- 7.2 Electrooptical Effects in Ferroelectric Liquid Crystals.- 7.2.1 The Clark-Lagerwall Effect.- 7.2.2 Deformed Helix Ferroelectric Effect.- 7.2.3 Electroclinic Effect Near the Smectic A ? C* Phase Transition.- 7.2.4 Other Electrooptical Effects.- 7.2.5 Orientation of Samples.- 7.2.6 Problems of Bistability Realization.- 7.3 Ferroelectric Liquid Crystal Polymers.- 7.3.1 Introductory Remarks.- 7.3.2 Chemical Structures.- 7.3.3 Ferroelectricity.- 7.3.4 Electrooptical Switching.- References.- 8 Applications of Electrooptical Liquid Crystalline Materials.- 8.1 Displays.- 8.1.1 Active Matrix Addressed Displays.- 8.1.2 Supertwist Displays for Personal Computers.- 8.1.3 Projection Displays.- 8.1.4 Guest-Host Large Area Information Boards.- 8.1.5 General Trends in Display Applications.- 8.2 Optical Data Processing Devices.- 8.2.1 Light Valves.- 8.2.2 Modulators, Shutters.- 8.2.3 Deflectors of Light.- 8.2.4 Integrated Optical Devices.- 8.2.5 Matrix Spatial Light Modulators or Controlled Transparencies.- 8.2.6 Liquid Crystal Logic Elements.- 8.2.7 Optical Filtration.- 8.2.8 Application of Polymer Liquid Crystals in Optoelectronics.- 8.3 Other Applications.- 8.3.1 Storage Devices.- 8.3.2 Stereoscopic Liquid Crystal Sytems.- 8.3.3 Nondestructive Testing.- 8.3.4 Large Area Glass Light Shutters on Polymer Dispersed Liquid Crystal Films.- References.
Electrooptic effects provide the basis for much liquid-crystal display technology. This book, by two of the leaders in liquid-crystal research in Russia, presents a complete and accessible treatment of virtually all known phenomena occurring in liquid crystals under the influence of electric fields.