Bültmann & Gerriets
Variational Calculus with Elementary Convexity
von J. L. Troutman
Verlag: Springer New York
Reihe: Undergraduate Texts in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4684-0158-5
Auflage: 1983
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 365 Seiten

Preis: 53,49 €

53,49 €
merken
Inhaltsverzeichnis
Klappentext

0 Review of Optimization in ?d.- Problems.- One Basic Theory.- 1 Standard Optimization Problems.- 1.1. Geodesic Problems.- (a) Geodesics in ?d.- (b) Geodesics on a Sphere.- (c) Other Geodesic Problems.- 1.2. Time-of-Transit Problems.- (a) The Brachistochrone.- (b) Steering Problems.- 1.3. Isoperimetric Problems.- 1.4. Surface Area Problems.- (a) Minimal Surface of Revolution.- (b) Minimal Area Problem.- (c) Plateau's Problem.- 1.5. Summary: Plan of the Text.- Notation: Uses and Abuses.- Problems.- 2 Linear Spaces and Gâteaux Variations.- 2.1. Real Linear Spaces.- 2.2. Functions from Linear Spaces.- 2.3. Fundamentals of Optimization.- Constraints.- Rotating Fluid Column.- 2.4. The Gâteaux Variations.- Problems.- 3 Minimization of Convex Functions.- 3.1. Convex Functions.- 3.2. Convex Integral Functions.- Free End Point Problems.- 3.3. [Strongly] Convex Functions.- 3.4. Applications.- (a) Geodesics on a Cylinder.- (b) A Brachistochrone.- (c) A Profile of Minimum Drag.- (d) An Economics Problem.- (e) Minimal Area Problem.- 3.5. Minimization with Convex Constraints.- The Hanging Cable.- Optimal Performance.- 3.6. Summary: Programs for Minimization.- Problems.- 4 The Lemmas of Lagrange and Du Bois-Reymond.- Problems.- 5 Local Extrema in Normed Linear Spaces.- 5.1. Norms for Linear Spaces.- 5.2. Normed Linear Spaces: Convergence and Compactness.- 5.3. Continuity.- 5.4. (Local) Extremal Points.- 5.5. Necessary Conditions: Admissible Directions.- 5.6*. Affine Approximation: The Fréchet Derivative.- Tangency.- 5.7. Extrema with Constraints: Lagrangian Multipliers.- Problems.- 6 The Euler-Lagrange Equations.- 6.1. The First Equation: Stationary Functions.- 6.2. Special Cases of the First Equation.- (a) When f = f(z).- (b) When f = f(x, z).- (c) When f = f(y, z).- 6.3. The Second Equation.- 6.4. Variable End Point Problems: Natural Boundary Conditions.- Jakob Bernoulli's Brachistochrone.- Transversal Conditions*.- 6.5. Integral Constraints: Lagrangian Multipliers.- 6.6. Integrals Involving Higher Derivatives.- Buckling of a Column under Compressive Load.- 6.7. Vector Valued Stationary Functions.- The Isoperimetric Problem.- Lagrangian Constraints*.- Geodesics on a Surface.- 6.8*. Invariance of Stationarity.- 6.9. Multidimensional Integrals.- Minimal Area Problem.- Natural Boundary Conditions.- Problems.- Two Advanced Topics.- 7 Piecewise C1 Extremal Functions.- 7.1. Piecewise C1 Functions.- (a) Smoothing.- (b) Norms for ?1.- 7.2. Integral Functions on ?1.- 7.3. Extremals in ?1 [a, b]: The Weierstrass-Erdmann Corner Conditions.- A Sturm-Liouville Problem.- 7.4. Minimization Through Convexity.- Internal Constraints.- 7.5. Piecewise C1 Vector Valued Extremals.- Minimal Surface of Revolution.- Hilbert's Differentiability Criterion*.- 7.6*. Conditions Necessary for a Local Minimum.- (a) The Weierstrass Condition.- (b) The Legendre Condition.- Bolza's Problem.- Problems.- 8 Variational Principles in Mechanics.- 8.1. The Action Integral.- 8.2. Hamilton's Principle: Generalized Coordinates.- Bernoulli's Principle of Static Equilibrium.- 8.3. The Total Energy.- Spring-Mass-Pendulum System.- 8.4. The Canonical Equations.- 8.5. Integrals of Motion in Special Cases.- Jacobi's Principle of Least Action.- Symmetry and Invariance.- 8.6. Parametric Equations of Motion.- 8.7*. The Hamilton-Jacobi Equation.- 8.8. Stationary Functions; Complementary Inequalities.- 8.9. Continuous Media.- (a) Taut String.- The Nonuniform String.- (b) Stretched Membrane.- Static Equilibrium of (Nonplanar) Membrane.- Problems.- 9* Sufficient Conditions for a Minimum.- 9.1. The Weierstrass Method.- 9.2. [Strict] Convexity of f(x, Y, Z).- 9.3. Fields.- Exact Fields and the Hamilton-Jacobi Equation*.- 9.4. Hilbert's Invariant Integral.- The Brachistochrone*.- Variable End Point Problems.- 9.5. Minimization with Constraints.- The Wirtinger Inequality.- 9.6.* Central Fields.- Smooth Minimal Surface of Revolution.- 9.7. Construction of Central Fields with Given Trajectory; The Jacobi Condition.- 9.8. Sufficient Conditions for a Local Minimum.- (a) Pointwise Results.- Hamilton's Principle.- (b) Trajectory Results.- 9.9*. Necessity of the Jacobi Condition.- 9.10. Concluding Remarks.- Problems.- A.1. The Intermediate and Mean Value Theorems.- A.2. The Fundamental Theorem of Calculus.- A.3. Partial Integrals: Leibniz' Formula.- A.4. An Open Mapping Theorem.- A.5. Families of Solutions to a System of Differential Equations.- A.6. The Rayleigh Ratio.- Answers to Selected Problems.



The calculus of variations, whose origins can be traced to the works of Aristotle and Zenodoros, is now Ii vast repository supplying fundamental tools of exploration not only to the mathematician, but-as evidenced by current literature-also to those in most branches of science in which mathematics is applied. (Indeed, the macroscopic statements afforded by variational principles may provide the only valid mathematical formulation of many physical laws. ) As such, it retains the spirit of natural philosophy common to most mathematical investigations prior to this century. How­ ever, it is a discipline in which a single symbol (b) has at times been assigned almost mystical powers of operation and discernment, not readily subsumed into the formal structures of modern mathematics. And it is a field for which it is generally supposed that most questions motivating interest in the subject will probably not be answerable at the introductory level of their formulation. In earlier articles,1,2 it was shown through several examples that a complete characterization of the solution of optimization problems may be available by elementary methods, and it is the purpose of this work to explore further the convexity which underlay these individual successes in the context of a full introductory treatment of the theory of the variational calculus. The required convexity is that determined through Gateaux variations, which can be defined in any real linear space and which provide an unambiguous foundation for the theory.


weitere Titel der Reihe