Bültmann & Gerriets
Computer-Oriented Mathematical Physics
von Donald Greenspan
Verlag: Elsevier Science & Techn.
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4832-7884-1
Erschienen am 24.05.2016
Sprache: Englisch
Umfang: 178 Seiten

Preis: 24,95 €

24,95 €
merken
Klappentext
Inhaltsverzeichnis

Computer-Oriented Mathematical Physics describes some mathematical models of classical physical phenomena, particularly the mechanics of particles.
This book is composed of 12 chapters, and begins with an introduction to the link between mathematics and physics. The subsequent chapters deal with the concept of gravity, the theoretical foundations f classical physics as a mathematical science, and the principles of pendulum and other oscillators. These topics are followed by discussions of waves, vectors, gravitation, the body-problem, and discrete fluid models. The final chapters examine the phenomena of spinning tops and skaters, as well as the Galilean principle of relativity.
This book is of value as an introductory textbook for math and physics university and advanced high school students.



Chapter 1 Mathematical and Physical Sciences 1.1 Introduction 1.2 Mathematical Science 1.3 Physical Science 1.4 ExercisesChapter 2 Gravity 2.1 Introduction 2.2 A Simple Experiment 2.3 Velocity 2.4 Acceleration 2.5 Further Experiments 2.6 A Mathematical Model 2.7 Still Further Experiments 2.8 ExercisesChapter 3 Theoretical Physics as a Mathematical Science 3.1 Introduction 3.2 Basic Mathematical Concepts 3.3 Basic Physical Concepts 3.4 Remarks 3.5 ExercisesChapter 4 The Pendulum and Other Oscillators 4.1 Introduction 4.2 A Theoretical Pendulum 4.3 The Harmonic Oscillator 4.4 Harmonic Motion 4.5 Remarks 4.6 ExercisesChapter 5 Waves 5.1 Introduction 5.2 The Discrete String 5.3 Examples 5.4 ExercisesChapter 6 Vectors 6.1 Introduction 6.2 Two-Dimensional Vectors 6.3 Three-Dimensional Vectors 6.4 ExercisesChapter 7 Gravitation 7.1 Introduction 7.2 The 1/r2 Law 7.3 Gravitation 7.4 Basic Planar Concepts 7.5 Planetary Motion and Discrete Gravitation 7.6 Newton's Method of Iteration 7.7 An Orbit Example 7.8 Gravity Revisited 7.9 Attraction and Repulsion 7.10 Remarks 7.11 ExercisesChapter 8 The Three-body Problem 8.1 Introduction 8.2 The Equations of Motion 8.3 Conservation of Energy 8.4 Solution of the Discrete Three-Body Problem 8.5 The Oscillatory Nature of Planetary Perihelion Motion 8.6 Center of Gravity 8.7 Conservation of Linear Momentum 8.8 Conservation of Angular Momentum 8.9 ExercisesChapter 9 The n-Body Problem 9.1 Introduction 9.2 Discrete n-Body Interaction 9.3 The Solid State Building Block 9.4 Flow of Heat in a Bar 9.5 Oscillation of an Elastic Bar 9.6 ExercisesChapter 10 Discrete Fluid Models 10.1 Introduction 10.2 Laminar and Turbulent Flows 10.3 Shock Waves 10.4 ExercisesChapter 11 Spinning Tops and Skaters 11.1 Introduction 11.2 The Spinning Top 11.3 Angular Velocity 11.4 The Spinning Skater 11.5 ExercisesChapter 12 The Galilean Principle of Relativity 12.1 Introduction 12.2 The Galilean Principle 12.3 Remarks 12.4 ExercisesAppendix A Fortran Program for the Harmonic Oscillator Example of Section 4.4Appendix B Fortran Program for the Wave Interaction Example of Section 5.3Appendix C Fortran Program for the Orbit Calculation of Section 7.7Appendix D Fortran Program for Three-body Problem of Section 8.2Appendix E Fortran Program for General N-body InteractionAnswers to Selected ExercisesReferences and Sources for Further ReadingIndex