Bültmann & Gerriets
The Calculus of Variations and Optimal Control
An Introduction
von George Leitmann
Verlag: Springer US
Reihe: Mathematical Concepts and Methods in Science and Engineering Nr. 24
Hardcover
ISBN: 978-1-4899-0335-8
Auflage: Softcover reprint of the original 1st ed. 1981
Erschienen am 23.05.2013
Sprache: Englisch
Format: 254 mm [H] x 178 mm [B] x 18 mm [T]
Gewicht: 619 Gramm
Umfang: 328 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 16. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems.



I. Calculus of Variations.- 1. Introduction.- 2. Problem Statement and Necessary Conditions for an Extremum.- 3. Integration of the Euler-Lagrange Equation.- 4. An Inverse Problem.- 5. The Weierstrass Necessary Condition.- 6. Jacobi's Necessary Condition.- 7. Corner Conditions.- 8. Concluding Remarks.- II. Optimal Control.- 9. Introduction.- 10. Problem Statement and Optimality.- 11. Regular Optimal Trajectories.- 12. Examples of Extremal Control.- 13. Some Generalizations.- 14. Special Systems.- 15. Sufficient Conditions.- 16. Feedback Control.- 17. Optimization with Vector-Valued Cost.- References.


andere Formate
weitere Titel der Reihe