Acoustic source localization is an essential component in many modern day audio applications. For example, smart speakers require localization capabilities in order to determine the speakers in the scene and their role. Based on the location information, they can enhance a speaker or carry out location specific tasks, such as switching the lights on and off, steering a camera, etc. Localization has often been based on creating physical models which become extremely intricate in real-world applications. Recently, researchers have started using learning techniques to address localization problems.
This monograph introduces the reader to the research and practical aspects behind the approach of learning the characteristics of the acoustic environment directly from the data rather than using a predefined physical model. Written by the experts in the field who have developed many of these techniques, it provides a comprehensive overview and insights into this burgeoning area of acoustic developments. The reader is introduced to the underlying mathematics before being introduced to the localization problem in depth. The core paradigm of using manifolds for diffusion mapping and distance is then described. Building on these concepts, the authors address both single and multiple manifold localization. Finally, manifold-based tracking is covered.
Data-Driven Multi-Microphone Speaker Localization on Manifolds is an illuminating introduction to designing and building acoustic systems where localization of multi-microphone and speakers forms an essential part of the system.