Bültmann & Gerriets
Ultrafast Supercontinuum Generation in Transparent Solid-State Media
von Audrius Dubietis, Arnaud Couairon
Verlag: Springer International Publishing
Reihe: SpringerBriefs in Physics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-030-14995-6
Auflage: 1st ed. 2019
Erschienen am 30.03.2019
Sprache: Englisch
Umfang: 125 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Biografische Anmerkung
Inhaltsverzeichnis

Audrius Dubietis graduated from Vilnius University in 1989, and was awarded a PhD in 1996. He has been professor in the Department of Quantum Electronics, Laser Research Center, Vilnius University, since 2006. His areas of research areas include nonlinear optics, laser physics, atmospheric phenomena, physics, optics, and astronomy. In 1992, together with G. JonuSauskas and A. Piskarskas, he proposed a method of parametric amplification of phase-modulated light pulses, which is implemented by the most important ultra-powerful laser centers worldwide. He has published more than 90 scientific articles in the peer-reviewed literature.


Arnaud Couairon is a research director at the CNRS. He studied at Ecole Normale Supérieure in Paris and did his Ph.D. at Ecole Polytechnique (1997) on the dynamics of open shear flows. Since 1997, he has been working on ultrashort laser pulse filamentation and associated phenomena. He developed a virtual numerical laboratory for simulating the nonlinear propagation of ultrashort laser pulses in gases, liquids, or solids. His research interests include laser-matter interaction, ultrafast and nonlinear optics, and plasma physics.




Preface

Introduction

Part I. Physical picture of supercontinuum generation

Chapter 1. Governing physical effects

1.1. Self-focusing of laser beams

1.2. Self-phase modulation of laser pulses

1.3. Nonlinear absorption and ionization

1.4. Plasma effects

1.4.1. Transition of electrons from the valence to the conduction band

1.4.2. Refractive index change

1.4.3. Plasma induced phase modulation

1.4.4. The Drude-Lorentz model

1.5. Intensity clamping

1.6. Chromatic dispersion

1.7. Self-steepening and space-time focusing

1.8. Four wave mixing and phase matching

1.9. Conical emission

Chapter 2. Femtosecond filamentation in solid state media

2.1. Universal features

2.2. Numerical model

2.3. Supercontinuum generation under normal GVD

2.4. Supercontinuum generation under anomalous GVD

2.5. Supercontinuum generation under near zero GVD

2.6. Comparison with supercontinuum generation in a fiber

Part 2. Overview of the experimental results

Chapter 3. General practical considerations

3.1. Materials

3.2. Numerical aperture

3.3. Stability issues

3.4. Focusing-defocusing cycles

3.5. Multiple filamentation

Chapter 4. Experimental results

4.1. Water as prototypical nonlinear medium

4.2. Glasses

4.3. Alkali metal fluorides

4.4. Laser hosts

4.5. Crystals possessing second-order nonlinearity

4.6. Semiconductors

4.7. Other nonlinear media

Chapter 5. New developments

5.1. Power and energy scaling

5.2. Pulse compression

5.3. Supercontinuum generation with picosecond laser pulses

5.4. Supercontinuum generation with non-Gaussian beams

5.5. Control of supercontinuum generation

References


andere Formate
weitere Titel der Reihe