Bültmann & Gerriets
Deep Learning Architectures
A Mathematical Approach
von Ovidiu Calin
Verlag: Springer International Publishing
Reihe: Springer Series in the Data Sciences
Hardcover
ISBN: 978-3-030-36723-7
Auflage: 1st ed. 2020
Erschienen am 14.02.2021
Sprache: Englisch
Format: 254 mm [H] x 178 mm [B] x 43 mm [T]
Gewicht: 1460 Gramm
Umfang: 792 Seiten

Preis: 69,54 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

69,54 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.




Ovidiu Calin, a graduate from University of Toronto, is a professor at Eastern Michigan University and a former visiting professor at Princeton University and University of Notre Dame. He has delivered numerous lectures at several universities in Japan, Hong Kong, Taiwan, and Kuwait over the last 15 years. His publications include over 60 articles and 8 books in the fields of machine learning, computational finance, stochastic processes, variational calculus and geometric analysis.



Introductory Problems.- Activation Functions.- Cost Functions.- Finding Minima Algorithms.- Abstract Neurons.- Neural Networks.- Approximation Theorems.- Learning with One-dimensional Inputs.- Universal Approximators.- Exact Learning.- Information Representation.- Information Capacity Assessment.- Output Manifolds.- Neuromanifolds.- Pooling.- Convolutional Networks.- Recurrent Neural Networks.- Classification.- Generative Models.- Stochastic Networks.- Hints and Solutions. 


weitere Titel der Reihe