Bültmann & Gerriets
Completeness Theorems and Characteristic Matrix Functions
Applications to Integral and Differential Operators
von Sjoerd M. Verduyn Lunel, Marinus A. Kaashoek
Verlag: Springer International Publishing
Reihe: Operator Theory: Advances and Applications Nr. 288
Hardcover
ISBN: 978-3-031-04510-3
Auflage: 1st ed. 2022
Erschienen am 15.06.2023
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 20 mm [T]
Gewicht: 557 Gramm
Umfang: 368 Seiten

Preis: 149,79 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Biografische Anmerkung

- 1. Preliminaries. - 2. Completeness Theorems for Compact Hilbert Space Operators. - 3. Compact Hilbert Space Operators of Order One. - 4. Completeness for a Class of Banach Space Operators. - 5. Characteristic Matrix Functions for a Class of Operators. - 6. Finite Rank Perturbations of Volterra Operators. - 7. Finite Rank Perturbations of Operators of Integration. - 8. Discrete Case: Infinite Leslie Operators. - 9. Semi-Separable Operators and Completeness. - 10. Periodic Delay Equations. - 11. Completeness Theorems for Period Maps. - 12. Completeness for Perturbations of Unbounded Operators. - 13. Applications to Dynamical Systems. - 14. Results from the Theory of Entire Functions. - Epilogue.



Marinus A. Kaashoek is a Dutch mathematician, and Emeritus Professor Analysis and Operator Theory at the Vrije Universiteit in Amsterdam. Kaashoek's research interests are in the field of Analysis and Operator Theory, and various connections between Operator Theory, Matrix Theory and Mathematical Systems Theory. In particular, Wiener-Hopf integral equations and Toeplitz operators, their nonstationary variants, and other structured operators, such as continuous operator analogs of Bezout and resultant matrices. State space methods for problems in analysis are shown to be useful. Also metric constrained interpolation problems and completion problems for partially given operators, including relaxed commutant lifting problems, are proved to be solvable.

Sjoerd M. Verduyn Lunel is Professor of Applied Analysis at Utrecht University. He held positions at Brown University, Georgia Institute of Technology, University of Amsterdam, Vrije Universiteit Amsterdam, and Leiden University. His research interests are at the interface of Analysis and infinite dimensional Dynamical Systems Theory with focus on the theory of Functional Differential Equations. He was co-Editor-in-Chief of Integral Equations and Operator Theory (2000-2009) and is currently associate editor of SIAM Journal on Mathematical Analysis and of Integral Equations and Operator Theory. In 2012 he was elected member of the Royal Holland Society of Sciences and Humanities and in 2014 he was appointed honorary member of the Indonesian Mathematical Society.


andere Formate
weitere Titel der Reihe