Bültmann & Gerriets
Advances in the Theory of Varieties of Semigroups
von Edmond W. H. Lee
Verlag: Springer International Publishing
Reihe: Frontiers in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-031-16497-2
Auflage: 1st ed. 2023
Erschienen am 08.04.2023
Sprache: Englisch
Umfang: 287 Seiten

Preis: 58,84 €

58,84 €
merken
zum Hardcover 58,84 €
Biografische Anmerkung
Inhaltsverzeichnis

Edmond W. H. Lee is a professor of mathematics at Nova Southeastern University, USA. He holds a Ph.D. from Simon Fraser University, Canada, and a D.Sc. from National Research University Higher School of Economics, Russia. As a mathematician, Lee is mainly interested in the theory of varieties of semigroups-a topic that belongs to the intersection of universal algebra and semigroup theory-and is most known for his work on equational theories of small semigroups. Lee is currently an active member of the editorial boards of Algebra Universalis and Semigroup Forum.



Historical overview and main results.- Preliminaries. Part I - Semigroups.- Aperiodic Rees-Suschkewitsch varieties.- A problem of Pollak and Volkov on hereditarily finitely based identities.- Sufficient conditions for the non-finite basis property.- Semigroups without irredundant identity bases.- Part II - Involution Semigroups.- Involution semigroups with infinite irredundant identity bases.- Finitely based involution semigroups with non-finitely based reducts.- Counterintuitive examples of involution semigroups.- Equational theories of twisted involution semigroups.- Part III - Monoids.- Hereditarily finitely based varieties of monoids.- Varieties of aperiodic monoids with central idempotents.- Certain Cross varieties of aperiodic monoids with commuting idempotents.- Counterintuitive examples of monoids.


andere Formate
weitere Titel der Reihe