Bültmann & Gerriets
Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains
von Mikhail Borsuk
Verlag: Springer Nature Switzerland
Reihe: Frontiers in Mathematics
Hardcover
ISBN: 978-3-031-64090-2
Auflage: Second Edition 2024
Erschienen am 27.10.2024
Sprache: Englisch
Format: 240 mm [H] x 168 mm [B] x 19 mm [T]
Gewicht: 585 Gramm
Umfang: 348 Seiten

Preis: 58,84 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

58,84 €
merken
zum E-Book (PDF) 58,84 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

Mikhail Borsuk is a well-known specialist in nonlinear boundary value problems for elliptic equations in non-smooth domains. He is a student-follower of eminent mathematicians Y. B. Lopatinskiy and V. A. Kondratiev. He graduated from the Steklov Mathematical Institute of the Russian Academy of Sciences (Moscow) for his postgraduate studies and then worked at the Moscow Institute of Physics and Technology and the Central Aerohydrodynamic Institute of Professor N. E. Zhukovskiy. He is a professor emeritus at the University of Warmia and Mazury in Olsztyn (Poland), where he worked for more than 20 years. He has published 4 monographs, 2 textbooks for students, and   81 scientific articles.



- 1. Preliminaries.- 2. Eigenvalue Problem and Integro-Differential Inequalities.- 3. Best Possible Estimates of Solutions to the Interface Problem for Linear Elliptic Divergence
Second Order Equations in a Conical Domain.- 4. Interface Problem for the Laplace Operator with N Different Media.- 5. Interface Problem for Weak Quasi-Linear Elliptic Equations in a Conical Domain.- 6. Interface Problem for Strong Quasi-Linear Elliptic Equations in a Conical Domain.- 7. Best Possible Estimates of Solutions to the Interface Problem for a Quasi-Linear Elliptic Divergence Second Order Equation in a Domain with a Boundary Edge.- 8. Interface Oblique Derivative Problem for Perturbed p(x)-Laplacian Equation in a Bounded n¿ Dimensional Cone.- 9. Existence of Bounded Weak Solutions.



The goal of this book is to investigate the behavior of weak solutions to the elliptic interface problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is considered both for linear and quasi-linear equations, which are among the less studied varieties. As a second edition of Transmission Problems for Elliptic Second-Order Equations for Non-Smooth Domains (Birkhäuser, 2010), this volume includes two entirely new chapters: one about the oblique derivative problems for the perturbed p(x)-Laplacian equation in a bounded n-dimensional cone, and another about the existence of bounded weak solutions.
Researchers and advanced graduate students will appreciate this compact compilation of new material in the field.


andere Formate
weitere Titel der Reihe