Bültmann & Gerriets
The Hardy Space of a Slit Domain
von Alexandru Aleman, Nathan S. Feldman, William T. Ross
Verlag: Birkhäuser Basel
Reihe: Frontiers in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-0346-0098-9
Auflage: 2009
Erschienen am 08.01.2010
Sprache: Englisch
Umfang: 144 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Inhaltsverzeichnis
Klappentext

Preface; Notation; List of Symbols; Preamble; 1 Introduction; 2 Preliminaries; 3 Nearly invariant subspaces; 4 Nearly invariant and the backward shift; 5 Nearly invariant and de Branges spaces; 6 Invariant subspaces of the slit disk; 7 Cyclic invariant subspaces; 8 The essential spectrum; 9 Other applications; 10 Domains with several slits; 11 Final thoughts; 12 Appendix



If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .


andere Formate
weitere Titel der Reihe