Bültmann & Gerriets
Realtime Data Mining
Self-Learning Techniques for Recommendation Engines
von Michael Thess, Alexander Paprotny
Verlag: Springer International Publishing
Reihe: Applied and Numerical Harmonic Analysis
Gebundene Ausgabe
ISBN: 978-3-319-01320-6
Auflage: 2013
Erschienen am 16.12.2013
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 24 mm [T]
Gewicht: 676 Gramm
Umfang: 340 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

¿¿¿¿Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.¿ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's ¿classic¿ data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.
 
This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.



1 Brave New Realtime World - Introduction.- 2 Strange Recommendations? - On The Weaknesses Of Current Recommendation Engines.- 3 Changing Not Just Analyzing - Control Theory And Reinforcement Learning.- 4 Recommendations As A Game - Reinforcement Learning For Recommendation Engines.- 5 How Engines Learn To Generate Recommendations - Adaptive Learning Algorithms.- 6 Up The Down Staircase - Hierarchical Reinforcement Learning.- 7 Breaking Dimensions - Adaptive Scoring With Sparse Grids.- 8 Decomposition In Transition - Adaptive Matrix Factorization.- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization.- 10 The Big Picture - Towards A Synthesis Of Rl And Adaptive Tensor Factorization.- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests.- 12 Building A Recommendation Engine - The Xelopes Library.- 13 Last Words - Conclusion.- References.- Summary Of Notation.


andere Formate
weitere Titel der Reihe