Bültmann & Gerriets
Extreme States of Matter in Strong Interaction Physics
An Introduction
von Helmut Satz
Verlag: Springer International Publishing
Reihe: Lecture Notes in Physics Nr. 945
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-319-71894-1
Auflage: 2nd ed. 2018
Erschienen am 26.02.2018
Sprache: Englisch
Umfang: 288 Seiten

Preis: 85,59 €

85,59 €
merken
zum Hardcover 85,59 €
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext


Helmut Satz, Professor Emeritus at the Fakultät für Physik, Universität Bielefeld, Germany, studied at Michigan State University and the University of Hamburg, where he received his doctorate in 1963 and did his habilitation in 1967. After that, he worked at the University of California/ Los Angeles, at CERN/Geneva, and the University of Helsinki. Satz has been Professor of Theoretical Physics at the University of Bielefeld since 1971, retiring in2001. In addition to his Bielefeld activities, he served on the staff of Brookhaven National Laboratory (1985 - 1989) and at CERN (1089 - 1996), specifically to carry out research on the physics of the Quark-Gluon-Plasma, the state of matter which made up the very early universe and which is presently being studied in high energy nuclear collision experiments.


Professor Satz has been a great inspiration to his colleagues as well as his students, many of whom graduated under his supervision.  After his retirement, he was from 2002 to 2004 Gulbenkian professor at the Technical University of Lisbon, Portugal.  Since 1994 he has been a member of the Finnish Academy of Sciences, and since 2014 he holds an honorary doctorate of the University of Wroclaw, Poland.





Dedication.- Preface to the 1st Edition.- Preface to the 2nd Edition.- The Analysis of Dense Matter.- The Physics of Complex Systems.- The Limits of Hadron Physics.- From Hadrons to Quarks.- Statistical Quantum Chromodyanamics.- Broken Symmetries.- The QCD Phase Diagram.- The Quark-Gluon Plasma.- The Little Bang.- Probing the Quark-Gluon Plasma.- The Fireball Paradigm.- The Event Horizon of Color Confinement.- Fluids and Flow.- Outlook.



This book is a course-tested primer on the thermodynamics of strongly interacting matter - a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used.

The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature lattice QCD and an exposition of the important results obtained through the computer simulation of the lattice formulation. It goes on to clarify the relationship between the resulting critical behavior due to symmetry breaking/restoration in QCD, before turning to the QCD phase diagram. The presentation of bulk equilibrium thermodyamics is completed by studying the properties of the quark-gluon plasma as a new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics that arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. This second edition includes a new chapter on the hydrodynamic evolution of the medium produced in nuclear collisions. Since the study of flow for strongly interacting fluids has gained ever-increasing importance over the years, it is dealt with it in some detail, including comments on gauge/gravity duality. Moreover, other aspects of experimental studies are brought up to date, such as the search for critical behavior in multihadron production, the calibration of quarkonium production in nuclear collisions, and the relation between strangeness suppression and deconfinement.


andere Formate
weitere Titel der Reihe