Bültmann & Gerriets
Machine Learning at the Belle II Experiment
The Full Event Interpretation and Its Validation on Belle Data
von Thomas Keck
Verlag: Springer International Publishing
Reihe: Springer Theses
Gebundene Ausgabe
ISBN: 978-3-319-98248-9
Auflage: 1st ed. 2018
Erschienen am 12.01.2019
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 16 mm [T]
Gewicht: 453 Gramm
Umfang: 188 Seiten

Preis: 128,39 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 30. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

128,39 €
merken
zum E-Book (PDF) 117,69 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments.
The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts.
The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties.
The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the ¿ resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor.
The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay ¿B¿tau nü, which is used to validate the algorithms discussed in previous parts.



Thomas Keck is an experimental high-energy physicists. He obtained his PhD at the Karlsruhe Institute of Technology in 2017. As a member of the Belle and Belle II collaboration he was responsible for the development and implementation of machine learning algorithms in the Belle II Software Framework. In particular, his work was focused on hadronic and semileptonic tagging algorithms, and their application to rare B meson decays. His professional interests include any new technologies in the field of computer science in particular deep learning techniques and their application in physics.



Introduction.- From Belle to Belle II.- Multivariate Analysis Algorithms.- Full Event Interpretation.- B  tau mu.- Conclusion.


andere Formate
weitere Titel der Reihe