Quantum Probability and Orthogonal Polynomials.- Adjacency Matrices.- Distance-Regular Graphs.- Homogeneous Trees.- Hamming Graphs.- Johnson Graphs.- Regular Graphs.- Comb Graphs and Star Graphs.- The Symmetric Group and Young Diagrams.- The Limit Shape of Young Diagrams.- Central Limit Theorem for the Plancherel Measures of the Symmetric Groups.- Deformation of Kerov's Central Limit Theorem.
This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Quantum Probability and Orthogonal Polynomials.- Adjacency Matrix.- Distance-Regular Graph.- Homogeneous Tree.- Hamming Graph.- Johnson Graph.- Regular Graph.- Comb Graph and Star Graph.- Symmetric Group and Young Diagram.- Limit Shape of Young Diagrams.- Central Limit Theorem for the Plancherel Measure of the Symmetric Group.- Deformation of Kerov's Central Limit Theorem.- References.- Index.