Bültmann & Gerriets
Pride Month mit der Autorin Anne Herzel und "Verlorene Städte"
18.06.2025 um 19:00 Uhr
Basic Number Theory
von Andre Weil
Verlag: Springer Berlin Heidelberg
Reihe: Grundlehren der mathematischen Wissenschaften
Hardcover
ISBN: 978-3-540-58655-5
Auflage: 3rd edition 1973
Erschienen am 15.02.1995
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 19 mm [T]
Gewicht: 517 Gramm
Umfang: 340 Seiten

Preis: 74,89 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Juni.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

74,89 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Klappentext
Inhaltsverzeichnis

Biography of André Weil

André Weil was born on May 6, 1906 in Paris. After studying mathematics at the École Normale Supérieure and receiving a doctoral degree from the University of Paris in 1928, he held professorial positions in India, France, the United States and Brazil before being appointed to the Institute for Advanced Study, Princeton in 1958, where he remained until he died on August 6, 1998.

André Weil's work laid the foundation for abstract algebraic geometry and the modern theory of abelian varieties. A great deal of his work was directed towards establishing the links between number theory and algebraic geometry and devising modern methods in analytic number theory. Weil was one of the founders, around 1934, of the group that published, under the collective name of  N. Bourbaki, the highly influential multi-volume treatise Eléments de mathématique.



)tPI(}jlOV, e~oxov (10CPUljlr1.'CWV Aiux., llpop. . .dsup.. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially com­ plete account of the main features of classfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points.



I. Elementary Theory.- I. Locally compact fields.- II. Lattices and duality over local fields.- III. Places of A-fields.- IV. Adeles.- V. Algebraic number-fields.- VI. The theorem of Riemann-Roch.- VII. Zeta-functions of A-fields.- VIII. Traces and norms.- II. Classfield Theory.- IX. Simple algebras.- X. Simple algebras over local fields.- XI. Simple algebras over A-fields.- XII. Local classfield theory.- XIII. Global classfield theory.- Notes to the text.- Appendix I. The transfer theorem.- Appendix III. Shafarevitch's theorem.- Appendix IV. The Herbrand distribution.- Index of definitions.


weitere Titel der Reihe