Bültmann & Gerriets
Controlled Diffusion Processes
von N. V. Krylov
Übersetzung: A. B. Aries
Verlag: Springer Berlin Heidelberg
Reihe: Stochastic Modelling and Applied Probability Nr. 14
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-540-70914-5
Auflage: 1980
Erschienen am 26.09.2008
Sprache: Englisch
Umfang: 310 Seiten

Preis: 96,29 €

96,29 €
merken
zum Hardcover 106,99 €
Inhaltsverzeichnis
Klappentext

to the Theory of Controlled Diffusion Processes.- Auxiliary Propositions.- General Properties of a Payoff Function.- The Bellman Equation.- The Construction of ?-Optimal Strategies.- Controlled Processes with Unbounded Coefficients: The Normed Bellman Equation.



Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.


andere Formate
weitere Titel der Reihe