Bültmann & Gerriets
Spectral Methods
Fundamentals in Single Domains
von Claudio Canuto, Thomas A. Zang, Alfio Quarteroni, M. Yousuff Hussaini
Verlag: Springer Berlin Heidelberg
Reihe: Scientific Computation
Hardcover
ISBN: 978-3-642-06800-3
Auflage: Softcover reprint of hardcover 1st ed. 2006
Erschienen am 19.10.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 32 mm [T]
Gewicht: 885 Gramm
Umfang: 592 Seiten

Preis: 160,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 16. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

The authors are among the leading researchers in the field of computational fluid dynamics and have pioneered and promoted the "Spectral Methods in Fluid Dynamics".



Polynomial Approximation.- Basic Approaches to Constructing Spectral Methods.- Algebraic Systems and Solution Techniques.- Polynomial Approximation Theory.- Theory of Stability and Convergence.- Analysis of Model Boundary-Value Problems.- Erratum.



Since the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of the earlier book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since 1988. The initial treatment Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The first half of the book provides the algorithmic details of orthogonal expansions, transform methods, spectral discretization of differential equations plus their boundary conditions, and solution of the discretized equations by direct and iterative methods. The second half furnishes a comprehensive discussion of the mathematical theory of spectral methods on single domains, including approximation theory, stability and convergence, and illustrative applications of the theory to model boundary-value problems. Both the algorithmic and theoretical discussions cover spectral methods on tensor-product domains, triangles and tetrahedra. All chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is greatly expanded as are the set of numerical examples that illustrate the key properties of the various types of spectral approximations and the solution algorithms.
A companion book "Evolution to Complex Geometries and Applications to Fluid Dynamics" contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries and provides detailed discussions of spectral algorithms forfluid dynamics in simple and complex geometries.


andere Formate
weitere Titel der Reihe