Bültmann & Gerriets
Nichtlineare Finite-Element-Methoden
von Peter Wriggers
Verlag: Springer Berlin Heidelberg
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-56865-7
Auflage: 2001
Erschienen am 07.03.2013
Sprache: Deutsch
Umfang: 496 Seiten

Preis: 49,99 €

49,99 €
merken
zum Hardcover 64,99 €
Klappentext
Inhaltsverzeichnis

Die Anwendung der Finite-Element-Methode auf nichtlineare technische Probleme hat in den letzten Jahren - auch wegen der stark angestiegenen Rechnerleistung - erheblich zugenommen. Bei nichtlinearen numerischen Simulationen sind verschiedene Aspekte zu berücksichtigen, die das Wissen und Verstehen der theoretischen Grundlagen, der zugehörigen Elementformulierungen sowie der Algorithmen zur Lösung der nichtlinearen Gleichungen voraussetzen. Hierzu soll dieses Buch beitragen, wobei die Bandbreite nichtlinearer Finite-Element-Analysen im Bereich der Festkörpermechanik abgedeckt wird. Das Buch wendet sich an Studierende des Ingenieurwesens im Hauptstudium, an Doktoranden aber auch an praktisch tätige Ingenieure, die Hintergrundwissen im Bereich der Finite-Element-Methode erlangen möchten.



1. Einleitung.- 2. Nichtlineare Phänomene.- 2.1 Geomet rische Nichtlinearität.- 2.2 Physikalische Nichtlinearität.- 2.3 Nichtlinearität infolge von Randbedingungen.- 3. Kontinuumsmechanische Grundgleichungen.- 3.1. Kinematik.- 3.2 Bilanzgleichungen.- 3.3 Materialgleichungen.- 3.4 Schwache Form des Gleichgewichts, Variationsprinzipien.- 3.5 Linearisierungen.- 4. Räumliche Diskretisierung der Grundgleichungen.- 4.1 Generelles isoparametrisches Konzept.- 4.2 Diskretisierung der Grundgleichungen.- 5. Lösungsverfahren für zeitunabhängige Probleme.- 5.1 Lösung nichtlinarer Gleichungssysteme.- 5.2 Löser für lineare Gleichungssy steme.- 5.3 Beispielezu den Algorithmen und Cleichungslosem.- 6. Lösungsverfahren für zeitabhängige Probleme.- 6.1 Integration der Bewegungsgleichungen.- 6.2 Integration inelastischer Materialgleichungen beikleinen Deformationen.- 6.3 Integration der Materialgleichungen bei großen Deformationen.- 7. Stabilitätsproblerne.- 7.1 Vorbemerkungen.- 7.2 Direkte Berechnung von Stabilitätspunkten.- 7.3 Algorithmus für nichtlineare Stabilitätsprobleme.- 8. Adaptive Verfahren.- 8.1 Randwertproblem und Diskretisierung.- 8.2 Fehlerschätzer und -indikatoren.- 8.3 Fehlerschätzung für Plastizität.- 8.4 Netzverfeinerung.- 8.5 Adaptive Netzgenerierung.- 8.6 Beispiele.- 9. Spezielle Strukturelemente.- 9.1 Nichtlineares Fachwerkelement.- 9.2 Zweidimensionales geometrisch exaktes Balkenelement.- 9.3 Rotationssymmetrisches Schalenelement.- 9.4 Allgemeine Schalenelemente.- 9.5 Beispiele.- 10. Spezielle Kontinuumselemente.- 10.1 Anforderungen an Kontinuumselemente.- 10.2 Gemischte Elemente für Inkompressibilität.- 10.3 Stabilisierte finite Elemente.- 10.4 Enhanced Strain Element.- 11. Kontaktprobleme.- 1l.1 Kontaktkinernatik.- 11.2 KonstitutiveGleichungen in der Kontaktzone.- 11.3 Schwache Formulierung.- 11.4 Diskretisierung.- A. Tensorrechnung.- A.l Tensoralgebra.- A.1.l Definition eines Tensors.- A.1.2 Basisdarstellung von Vektoren und Tensoren.- A.1.3 Produkte von Vektoren und Tensoren.- A.1.4 Spezielle Formen von Tensoren.- A.1.5 Eigenwerte und Invarianten von Tensoren.- A.1.6 Tensoren höherer Stufe.- A.2 Tensoranalysis.- A.2.1 Differentiation nach einer reellen Variablen.- A.2.2 Gradientenbildung eines Feldes.- A.2.3 Divergenzbildung eines Feldes.- A.2.4 Rotation eines Vektorfeldes.- A.2.5 Ableitung der Invarianten nach einem Tensor.- A.2.6 Pull back und push forward Operationen.- A.2.7 Lie-Ableitung von Spannungstensoren.- A.2.8 Integralsätze.- Literatur.


andere Formate