Bültmann & Gerriets
Zahlen
von Heinz-Dieter Ebbinghaus, Hans Hermes, Friedrich Hirzebruch, Max Koecher
Verlag: Springer Berlin Heidelberg
Reihe: Springer-Lehrbuch
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-58155-7
Auflage: 3. Aufl. 1992
Erschienen am 07.03.2013
Sprache: Deutsch
Umfang: 337 Seiten

Preis: 39,99 €

39,99 €
merken
zum Hardcover 49,99 €
Inhaltsverzeichnis

A. Von den natürlichen zu den komplexen und p-adischen Zahlen.- 1. Natürliche, ganze und rationale Zahlen.- § 1. Historisches.- 1. Ägypten und Babylonien.- 2. Griechenland.- 3. Indisch-arabische Rechenpraxis.- 4. Neuzeit.- §2. Natürliche Zahlen.- 1. Definition der natürlichen Zahlen.- 2. Rekursionssatz und Einzigkeit von ?.- 3. Addition, Multiplikation und Anordnung der natürlichen Zahlen.- 4. PEANOS Axiome.- §3. Ganze Zahlen.- 1. Die additive Gruppe ?.- 2. Der Integritätsring ?.- 3. Die Anordnung in ?.- §4. Rationale Zahlen.- 1. Historisches.- 2. Der Körper ?.- 3. Die Anordnung in ?.- Literatur.- 2. Reelle Zahlen.- §1. Historisches.- 1. HIPPASUS und das Pentagon.- 2. EUDOXOS und die Proportionenlehre.- 3. Irrationalzahlen in der neuzeitlichen Mathematik.- 4. Präzisierungen des 19. Jahrhunderts.- §2. DEDEKINDsche Schnitte.- 1. Die Menge ? der Schnitte.- 2. Die Anordnung in ?.- 3. Die Addition in ?.- 4. Die Multiplikation in ?.- §3. Fundamentalfolgen.- 1. Historisches.- 2. Das CAUCHYsche Konvergenzkriterium.- 3. Der Ring der Fundamentalfolgen.- 4. Der Restklassenkörper F/N der Fundamentalfolgen modulo den Nullfolgen.- 5. Der vollständig geordnete Restklassenkörper F/N.- §4. Intervallschachtelungen.- 1. Historisches.- 2. Intervallschachtelungen und Vollständigkeit.- §5. Axiomatische Beschreibung der reellen Zahlen.- 1. Die natürlichen, ganzen und rationalen Zahlen im reellen Zahlkörper.- 2. Vollständigkeitssätze, 3. Einzigkeit und Existenz der reellen Zahlen.- Literatur.- 3. Komplexe Zahlen.- § 1. Genesis der komplexen Zahlen.- 1. CARDANO (1501-1576).- 2. BOMBELLI (1526-1572).- 3. DESCARTES (1596-1650), NEWTON (1643-1727) und LEIBNIZ (1646-1716).- 4. EULER (1707-1783).- 5. WALLIS (1616-1703), WESSEL (1745-1818) und ARGAND (1768-1822).- 6. GAUSS (1777-1855).- 7. CAUCHY (1789-1857).- 8. HAMILTON (1805-1865).- 9. Ausblick.- §2. Der Körper ?.- 1. Definition durch reelle Zahlenpaare.- 2. Die imaginäre Einheit i.- 3. Geometrische Darstellung.- 4. Nichtanordbarkeit des Körpers ?.- 5. Darstellung durch reelle 2 × 2 Matrizen.- §3. Algebraische Eigenschaften des Körpers ?.- 1. Die Konjugierung ? ??, z?z?.- 2. Körperautomorphismen von ?.- 3. Das natürliche Skalarprodukt Re(wz?) und die euklidische Länge ?z?.- 4. Produktregel und "Zwei-Quadrate-Satz".- 5. Quadratwurzeln und quadratische Gleichungen.- 6. Quadratwurzeln und n-te Wurzeln.- §4. Geometrische Eigenschaften des Körpers ?.- 1. Die Identität ?w, z?2 + ?iw, z?2 = ?w?2 ?z?2.- 2. Cosinussatz und Dreiecksungleichung.- 3. Zahlen auf Geraden und Kreisen. Doppelverhältnis.- 4. Sehnenvierecke und Doppelverhältnis.- 5. Satz von PTOLEMÄUS.- 6. WALLACEsche Gerade.- §5. Die Gruppen O(?) und SO(2).- 1. Abstandstreue Abbildungen von ?.- 2. Die Gruppe O (?).- 3. Die Gruppe SO (2) und der Isomorphismus S1 ? SO(2).- 4. Rationale Parametrisierung eigentlich orthogonaler 2 × 2 Matrizen.- § 6. Polarkoordinaten und n-te Wurzeln.- 1. Polarkoordinaten.- 2. Multiplikation komplexer Zahlen in Polarkoordinaten.- 3. MOIVREsche Formel.- 4. Einheitswurzeln.- 4. Fundamentalsatz der Algebra.- § 1. Zur Geschichte des Fundamentalsatzes.- 1. GIRARD (1595-1632) und DESCARTES (1596-1650).- 2. LEIBNIZ (1646-1716).- 3. EULER (1707-1783).- 4. D'ALEMBERT (1717-1783).- 5. LAGRANGE (1736-1813) und Laplace (1749-1827).- 6. Die Kritik durch GAUSS.- 7. Die vier Beweise von GAUSS.- 8. ARGAND (1768-1822) und CAUCHY (1789-1857).- 9. Fundamentalsatz der Algebra: 0 für 0 < y < ? und die Gleichung $$e^{i\frac{\pi} {2}}=i$$.- 6. Der Polarkoordinatenepimorphismus p: ? ? S1, 7. Die Zahl ? und Umfang und Inhalt eines Kreises.- §4. Klassische Formeln für ?.- 1. Die LEIBNIZsche Reihe für ?.- 2. Das VIETAsche Produkt für ?.- 3. Das EULERsche Sinusprodukt und das WALLIssche Produkt für ?.- 4. Die EULERschen Reihen für ?2,?4,....- 5. Die WEIERSTRASSsche Definition von ?.- 6. Irrationalität von ? und Kettenbruchentwicklung.- 7. Transzendenz von ?.- 6. Die p-adischen Zahlen.- §1. Zahlen als Funktionen.- §2. Die arithmetische Bedeutung der p-adischen Zahlen.- §3. Die analytische Natur der p-adischen Zahlen.- §4. Die p-adischen Zahlen.- Literatur.- B. Reelle Divisionsalgebren.- Repertorium. Grundbegriffe aus der Theorie der Algebren.- 1. Reelle Algebren.- 2. Beispiele reeller Algebren.- 3. Unteralgebren und Algebra-Homomorphismen.- 4. Bestimmung aller eindimensionalen Algebren.- 5. Divisionsalgebren.- 6. Konstruktion von Algebren mittels Basen.- 7. HAMILTOMsche Quaternionen.- §1. Die Quaternionenalgebra ?.- 1. Die Algebra ? der Quaternionen.- 2. Die Matrixalgebra ? und der Isomorphismus F: ? ? ?.- 3. Der Imaginärraum von ?.- 4. Quaternionenprodukt, Vektorprodukt und Skalarprodukt.- 5. Zur Nichtkommutativität von ?. Zentrum.- 6. Die Endomorphismen des ?-Vektorraumes ?.- 7. Quaternionenmultiplikation und Vektoranalysis.- 8. Fundamentalsatz der Algebra für Quaternionen.- §2. Die Algebra ? als euklidischer Vektorraum.- 1. Konjugierung und. Linearform Re.- 2. Eigenschaften des Skalarproduktes.- 3. Der "Vier-Quadrate-Satz".- 4. Konjugierungs- und Längentreue von Automorphismen.- 5. Die Gruppe S3 der Quaternionen der Länge 1.- 6. Die spezielle unitäre Gruppe SU(2) und der Isomorphismus S3 ? SU(2).- §3. Die orthogonalen Gruppen O(3), O(4) und die Quaternionen.- 1. Orthogonale Gruppen.- 2. Die Gruppe O(?). Satz von CAYLEY.- 3. Die Gruppe O(Im ?). Satz von HAMILTON.- 4. Die Epimorphismen S3?SO(3) und S3 × S3 ? SO(4).- 5. Drehachse und Drehwinkel.- 6. EULERsche Parameterdarstellung der SO(3).- 8. Isomorphiesätze von FROBENIUS, HOPF und GELFAND-MAZUR.- §1. HAMILTONsche Tripel in alternativen Algebren.- 1. Die rein-imaginären Elemente einer Algebra.- 2. HAMILTONsche Tripel.- 3. Existenz HAMILTONscher Tripel in alternativen Algebren.- 4. Alternative Algebren.- §2. Satz von FROBENIUS.- 1. Lemma von FROBENIUS.- 2. Beispiele quadratischer Algebren.- 3. Quaternionen-Lemma.- 4. Satz von FROBENIUS (1877).- §3. Satz von HOPF.- 1. Topologisierung reeller Algebren.- 2. Die Quadratabbildung A ? A, x?x2. HOPFsches Lemma.- 3. Satz von HOPF.- 4. Der ursprüngliche HOPFsche Beweis.- 5. Beschreibung aller 2-dimensionalen Algebren mit Einselement.- §4. Satz von GELFAND-MAZUR.- 1. BANACH-Algebren.- 2. Die binomische Reihe.- 3. Lokaler Umkehrsatz.- 4. Die multiplikative Gruppe A×.- 5. Satz von GELFAND-MAZUR.- 6. Struktur normierter assoziativer Divisionsalgebren.- 7. Das Spektrum.- 8. Historisches zum Satz von GELFAND-MAZUR.- 9. Ausblick.- 9: CAYLEY-Zahlen oder alternative Divisionsalgebren.- §1. Alternative quadratische Algebren.- 1. Quadratische Algebren.- 2. Satz über die Bilinearform.- 3. Satz über die Kon-jugierungsabbildung.- 4. Die Dreier-Identität.- 5. Der euklidische Vektorraum A und die orthogonale Gruppe O(A).- §2. Existenz und Eigenschaften der CAYLEY-Algebra O.- 1. Konstruktion der quadratischen Algebra O der Oktaven.- 2. Imaginärraum, Linearform, Bilinearform und Konjugierung von O.- 3. O als alternative Divisionsalgebra.- 4. "Acht-Quadrate-Satz".- 5. Die Gleichung O = ???p.- 6. Multiplikationstafel für O.- §3. Einzigkeit der CAYLEY-Algebra.- 1. Verdopplungssatz.- 2. Einzigkeit der CAYLEY-Algebra (ZORN 1933).- 3. Beschreibung von O durch ZoRNsche Vektormatrizen.- 10. Kompositionsalgebren. Satz von HURWITZ. Vektorprodukt-Algebren.- §1. Kompositionsalgebren.- 1. Historisches zur Kompositionstheorie.- 2. Beispiele.- 3. Kompositionsalgebren mit Einselement.- 4. Struktursatz für Kompositionsalgebren mit Einselement.- § 2. Mutation von Kompositionsalgebren.- 1. Mutationen von Algebren.- 2. Mutationssatz für endlich-dimensionale Kompositionsalgebren.- 3. Satz von HURWITZ (1898).- §3. Vektorprodukt-Algebren.- 1. Der Begriff der Vektorprodukt-Algebra.- 2. Konstruktion von Vektorprodukt-Algebren.- 3. Beschreibung aller Vektorprodukt-Algebren.- 4*. MALCEV-Algebren.- 5. Historische Bemerkung.- 11. Divisionsalgebren und Topologie.- § 1. Die Dimension einer Divisionsalgebra ist eine Potenz von 2.- 1. Ungerade Abbildungen und der Satz von HOPF.- 2. Homologie und Kohomo-logie mit Koeffizienten in F2.- 3. Beweis des Satzes von HOPF.- 4. Historische Bemerkungen zur Homologie- und Kohomologietheorie.- 5. Charakteristische Homologieklassen nach STIEFEL.- §2. Die Dimension einer Divisionsalgebra ist gleich 1, 2, 4 oder 8.- 1. Die mod 2-Invariante ?(f).- 2. Parallelisierbarkeit der Sphären und Divisionsalgebren.- 3. Vektorraumbündel.- 4. Charakteristische Kohomologieklassen nach WHITNEY.- 5. Der Ring der Vektorraumbündel.- 6. Die BoTTsche Periodizität.- 7. Charakteristische Klassen von direkten Summen und Tensorprodukten.- 8. Schluß des Beweises.- 9. Historische Anmerkungen.- §3. Ergänzungen.- 1. Definition der HOPFschen Invarianten.- 2. Die HoPFsche Konstruktion.- 3. Der Satz von ADAMS über die HoPFsche Invariante.- 4. Zusammenfassung.- 5. Der Satz von ADAMS über Vektorfelder auf Sphären.- Literatur.- C. Ausblicke.- 12. Non-Standard Analysis.- §1. Einführung.- §2. Der Non-Standard Zahlbereich *?.- 1. Konstruktion von *?.- 2. Eigenschaften von *?.- §3. Gemeinsamkeiten von ? und *?.- §4. Differential-und Integralrechnung.- 1. Differentiation.- 2. Integration.- Epilog.- Literatur.- 13. Zahlen und Spiele.- §1. Einleitung.- 1. Der traditionelle Aufbau der reellen Zahlen.- 2. Die CONWAYsche Methode.- 3. Übersicht.- §2. CONWAYspiele.- 1. Diskussion der DEDEKINDschen Postulate.- 2. CONWAYs Modifikation der DEDEKINDschen Postulate.- 3. CONWAYspiele.- §3. Spiele.- 1. Der Spielbegriff.- 2. Beispiele für Spiele.- 3. Ein Induktionsprinzip für Spiele.- §4. Zur Theorie der Spiele.- 1. Gewinnstrategien.- 2. Positive und negative Spiele.- 3. Eine Einteilung der Spiele. Gleichwertigkeit von Spielen.- §5. Eine halbgeordnete Gruppe äquivalenter Spiele.- 1. Das Negative eines Spiels.- 2. Die Summe zweier Spiele.- 3. Isomorphe Spiele.- 4. Eine Halbordnung der Spiele.- 5. Gleichheit von Spielen.- §6. Spiele und CONWAYspiele.- 1. Die grundlegenden Abbildungen.- 2. Übertragung der für Spiele definierten Relationen und Operationen auf CONWAYspiele.- 3. Beispiele.- §7. CONWAYzahlen.- 1. Die CONWAYschen Postulate (C1) und (C2).- 2. Elementare Eigenschaften der Ordnung.- 3. Beispiele.- §8. Der Körper der CONWAYzahlen.- 1. Die Rechenoperationen für Zahlen.- 2. Beispiele.- 3. Eigenschaften des Körpers der Zahlen.- Literatur.- 14. Mengenlehre und Mathematik.- § 1. Mengen und die Objekte der Mathematik.- 1. Urelemente und höhere Objekte.- 2. Mengentheoretische Definition höherer Objekte.- 3. Urelemente als Mengen.- § 2. Axiomensysteme der Mengenlehre.- 1. Die RUSSELLsche Antinomie.- 2. ZERMELOsche und ZERMELO-FRAENKELsche Mengenlehre.- 3. Einige Folgerungen.- 4. Mengenlehre mit Klassen.- §3. Einige metamathematische Aspekte.- 1. Die VON NEUMANNsche Hierarchie.- 2. Das Auswahlaxiom.- 3. Unabhängigkeitsbeweise.- Epilog.- Literatur.- Namenverzeichnis.- Porträts berühmter Mathematiker.


andere Formate
weitere Titel der Reihe