Bültmann & Gerriets
Brain Function and Oscillations
Volume I: Brain Oscillations. Principles and Approaches
von Erol Basar
Verlag: Springer Berlin Heidelberg
Reihe: Springer Series in Synergetics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-72192-2
Auflage: 1998
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 363 Seiten

Preis: 96,29 €

96,29 €
merken
Inhaltsverzeichnis

0. Prologue.- I. Foundations.- 1. Brain Dynamics and Brain Codes.- 1.1 Oscillations as Brain Codes.- 1.2 Resonance Phenomena.- 1.3 Global Brain Dynamics - Our Goal: A "Cloudy Description".- 1.3.1 Statistical Mechanics in Biology and Physics.- 2. Electrical Signals from the Brain.- 2.1 The Brain and Neurons.- 2.1.1 The Neuron Doctrine.- 2.1.2 The Organization of the Neuron.- 2.1.3 The Resting Membrane Potential.- 2.1.4 The Action Potential.- 2.1.5 Postsynaptic Potentials.- 2.2 Principles of Neural Operation.- 2.3 Recording and Classification at the Neuronal Level.- 2.3.1 Extracellular Recording.- 2.3.2 Intracellular Recording.- 2.3.3 A Brief Classification of Nerve Cell Membrane Potentials.- 2.3.4 Definition of the Poststimulus Time Histogram.- 2.4 Electrical Activity of Neural Populations.- 2.4.1 Spontaneous Electrical Activity of the Brain.- 2.4.2 Stereo-EEG (SEEG).- 2.4.3 Evoked Potentials of the Brain.- 2.4.4 Evoked Potentials Are Descriptively Useful as Signs of Dynamics Constituting a Useful Window (Bullock's View).- 2.4.5 Analysis of Single EEG-EP Epochs.- 3. The Brain: Sensory and Cognitive Pathways.- 3.1 Sensory-Cognitive Systems Are Organized in a Hierarchical and Parallel Fashion.- 3.1.1 Convergence and Divergence.- 3.1.2 Parallel Processing.- 3.2 Functional Neuroanatomy of the Auditory Pathway.- 3.2.1 Remarks about Variability in the Human Auditory Areas.- 3.3 Anatomy and Physiology of the Visual Pathway.- 3.4 Thalamic Organization and Cortico-Thalamic Circuits and Global Function of the Thalamus.- 3.5 Cerebral Cortex: Anatomy and Global function.- 3.5.1 Distributed Cortical Systems.- 3.5.2 Association Cortex and Frontal Lobe.- 3.6 Hippocampus: A Supramodal Polysensory System.- 3.6.1 Anatomical Description: Hippocampus and Limbic System.- 3.6.2 A Brief Review of the Function of the Hippocampus.- 3.6.3 Electrophysiology of the Hippocampus.- 3.6.4 Types of Hippocampal Theta Rhythm.- 3.6.5 Output of the Hippocampal Formation.- 3.6.6 Brainstem Modulation of the Hippocampus.- 3.7 Reticular Formation.- 3.7.1 Anatomy.- 3.7.2 Global function.- 3.7.3 Is the Reticular Formation a Polysensory High Command Structure?.- 4. Brain Dynamics Research Program.- 4.1 Introduction.- 4.2 The Concept "System".- 4.2.1 State of a System.- 4.2.2 The "Black Box" and the "White Box".- 4.2.3 The Concept of the "Gray Box".- 4.2.4 The "Black Box" and "Gray Box": Approaches to Exploring Brain function.- 4.3 Abstract Methods for Brain System Analysis.- 4.3.1 Abstract Methods for Brain State Analysis.- 4.3.2 Abstract Methods of General Systems Theory.- 4.3.3 New Methods for Studying Oscillatory Brain Potentials.- 4.4 Specific Methods for Analysis of Living Systems.- 4.4.1 Application of Pharmacological Agents.- 4.4.2 Partial Injury of the System.- 4.4.3 Reduction of the System to Its Passive Response.- 4.5 Methods of Thought, or Research Principles.- 4.5.1 Going into the System.- 4.5.2 Going out of the System.- 5. Wavelet Analysis of Brain Waves.- 5.1 Utility and Main Advantages of the Wavelet Method.- 5.2 Description of the Method.- 5.2.1 Spline Basis Functions.- 5.2.2 Discrete B-Splines.- 5.2.3 Spline Wavelet Transform.- 5.3 Results of Wavelet Analysis of EPs.- 5.3.1 Typical Animal.- 5.3.2 Wavelet Analysis of Single Trials.- 5.4 Interpretation of Wavelet Analysis.- 5.5 Role of Wavelet Transform Methods in the Analysis of Functional ERP Components.- 5.6 Selectively Distributed Oscillatory Systems in the Brain.- 6. Phase Locking of Oscillatory Responses: An Informative Approach for Studying Evoked Brain Activity.- 6.1 Introduction.- 6.2 Phase-Locked and Non-Phase-Locked Activity.- 6.3 Phase-Locked Activity in the Averaged EPs.- 6.4 Method.- 6.4.1 Identification of Phase Relationships in Single Sweeps.- 6.4.2 Stability of Phase Locking.- 6.4.3 Quantitative Assessment of Phase Locking.- 7. Resonance Phenomena in the Brain, Physical Systems, and Nature.- 7.1 What Is Resonance?.- 7.2 Pioneer Experiments on EEG Brain Resonance Phenomena.- 7.2.1 Visual Cortex, Light Stimulation.- 7.2.2 Auditory Cortex, Acoustical Stimulation.- 7.3 The Transfer Function Reflects the Behavior of Resonant Single Epochs.- 7.4 Multiple Resonances in Different EEG Frequency Bands.- 7.5 Resonance in Technical Systems.- 7.6 Resonance in the Brain as a Modern View.- II. Renaissance of the EEG and Oscillations.- 8. Event-Related Oscillations in the Brain.- 8.1 Induced Rhythms: A Widespread, Heterogeneous Class of Oscillations.- 8.2 Induced Rhythms: The View of Bullock.- 8.3 Pioneering Studies on Induced Rhythms.- 8.4 Event-Related Oscillations and Induced Rhythms as Important Leitmotifs in this Book.- 9. Correlation Between Unit Activity and Activity of Neural Populations.- 9.1 Around 10 Hz: Oscillation in Neural Response Following Light Stimulation.- 9.2 Experiments on the Cat Lateral Geniculate Nucleus (Alpha and Beta Responses).- 9.3 The View of Verzeano.- 9.4 The Gamma Band.- 9.5 The 10 Hz and 6 Hz States at the Membrane Level: The View of Llinás.- 9.6 Intrinsic 10 Hz Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons.- 9.7 The Most Recent Developments.- 10. Chaos in Brain Function.- 10.1 Deterministic Chaos.- 10.1.1 Chaos in Everyday Experience.- 10.2 The EEG has Strange Attractors: The EEG is not Noise.- 10.2.1 Some Preliminary Remarks on the Nonlinear Approach to EEG and Brain function.- 10.3 New Types of Expressions.- 10.4 Correlation Dimension.- 10.4.1 Computation of the Correlation Dimension.- 10.5 Typical Examples of Chaotic Behavior of EEG.- 10.5.1 Results During Slow-Wave Sleep: Cat Cortex, Hippocampus.- 10.5.2 Very High Frequency Behavior of the Cat's Cerebellar Cortex and Brainstem.- 10.5.3 Hippocampal Theta Activity: Transitions.- 10.5.4 Correlation Dimension of Alpha Activity: Brain Alpha Attractor.- 10.5.5 An Overview of EEG Investigations by Means of the Correlation Dimension: A Limited State of the Art.- 10.6 Lyapunov Exponents.- 10.6.1 Calculating Lyapunov Exponents: The Wolf Method.- 10.7 Lyapunov Exponents Applied to Brain Activity.- 10.7.1 Epilepsy.- 10.7.2 Sleep.- 10.7.3 Other Studies.- 10.8 Words of Caution and Remarks Concerning Future Research.- III. Resonance as the Basic Mechanism of Oscillatory Responses.- 11. Brain Synergetics: Frequency Locking of EEG: Order Out of Chaos.- 11.1 Evoked Frequency Locking.- 11.1.1 Frequency Domain Comparison of EEG and EP.- 11.1.2 Frequency Locking in the Reticular Formation and Inferior Colliculus During the Waking Stage.- 11.1.3 Frequency Locking in the Alpha Band in the Auditory Cortex.- 11.2 What Does "Evoked Frequency Locking" Add to Our Knowledge? Further Demonstration of the Important Relation Between EEG and EPs.- 11.2.1 Remarks on the Methodology.- 11.2.2 The Frequency Stabilization Factor.- 11.3 Sensory-Induced Frequency Locking.- 11.4 Working Hypothesis on the Relation Between EPs and the EEG.- 11.5 Synergetics and Laser Theory.- 11.6 The New EP Concept: Contribution of Different EP Components to the Original Averaged EP.- 12. Major Operating Rhythms (MOR) Control the Shape and Time Course of Evoked Potentials.- 12.1 Introduction.- 12.2 A New Approach: An Algorithm for Selective Averaging.- 12.3 Dependence of EP Amplitudes and Waveforms on the Prestimulus EEG. I. Vertex Recordings.- 12.3.1 Auditory Evoked Potentials.- 12.3.2 Visual Evoked Potentials.- 12.4 Dependence of EP Amplitudes and Waveforms on the Prestimulus EEG. II. Frontal Visual Evoked Potentials.- 12.5 Discussion.- 12.5.1 Inverse Relation Between EEG and Visual EP May Lead to a New Standardization in EP Measurements.- 12.5.2 Comments on Experimental Design.- 12.5.3 Frequency Content of EPs from Different Locations: Major Operating Rhythms (MORs).- 12.5.4 MOR of Occiput and Central Region (Vertex).- 12.5.5 Comparison with Results of Other Laboratories on EEG and EP/ERP Relationships.- 12.5.6 Functional Significance of the EEG-EP Interrelation.- 12.6 Conclusion.- 13. Oscillatory Brain Responses: Changes with Development and Aging.- 13.1 The Aim of the Chapter.- 13.2 Methodological Remarks.- 13.2.1 Analysis of Single-Sweep Amplitude and Enhancement.- 13.2.2 Analysis of Single-Sweep Phase-Locking.- 13.2.3 Statistical Analysis.- 13.3 Spontaneous and Evoked Alpha Activity at Occipital Sites in Three Age Groups.- 13.4 A Comparative Analysis of Frontal Versus Occipital 10 Hz Activity in Young and Middle-Aged Adults.- 13.5 Single-Sweep Analysis of Visual EPs in Young and Middle-Aged Adults.- 13.6 The Age-Related Changes in the Alpha Activity of the Brain.- 13.7 Alpha Response System and Frontal Lobe Functioning in Aging.- 14. Brain Response Susceptibility.- 14.1 Excitability of the Brain: Spontaneous EEG Rhythms and Evoked Responses.- 14.2 Brain Response Susceptibility.- 14.2.1 EEG in Children Might Provide a Useful Natural Model for Testing the Hypothesis for Brain Response Susceptibility.- 14.2.2 Aging- and Topology-Related Changes in Alpha Activity and Brain Response Susceptibility.- 14.2.3 Sleep vs. Vigilance Differences as a Model for Brain Response Susceptibility.- 14.2.4 Pharmacological and Pathological Modulation of Response Susceptibility.- 14.3 Internal Evoked Potentials.- 14.4 Is the Alpha Activity a Control Parameter for Brain Responses?.- 14.4.1 Models of Alpha Generators.- 14.4.2 Alpha Frequency as a Brain Code.- 14.4.3 A New Insight into the Age-Related Changes in the Alpha Activity of the Brain.- 15. The Evoked Potential Manifests a Superposition of Event-Related Oscillations.- 15.1 The Human Evoked Response Contains Multiple Oscillatory Responses.- 15.1.1 Two Types of Response Oscillations: Superposition Principle of Various EP Components in the Human Brain.- 15.2 P300 Response Manifests Superposition of Frequency Responses: Delta Response can be Isolated.- 15.2.1 Single-Trial ERP Analysis.- 15.3 P300-like Responses to NON-TARGET Stimuli.- 15.3.1 Benefits of the Delta Response Metric.- 16. Multiple Sclerosis: Break of the Alpha Response.- 16.1 Introduction.- 16.2 Visual Stimulation: Results.- 16.2.1 Visual EPs: Component Analysis by Means of Amplitude-Frequency Characteristics (Single Subjects and Mean Values); Statistical Evaluation.- 16.2.2 Visual EPs: Component Analysis by Means of Digital Filtering.- 16.3 Discussion of Results upon Light Stimuli.- 16.3.1 Functional Interpretation of Topographic Differences of Evoked Oscillations in Cross-Modality Experiments and Functional Deficits in MS.- 16.4 Responses to Auditory Stimulation: Rationale, Results, and Comparison to Visual Stimulation.- 16.4.1 Auditory EPs: Component Analysis by Means of Digital Filtering.- 16.4.2 Responses to Auditory Stimulation in Relation to Responses to Visual Stimulation.- 16.5 Alpha Responses in Multiple Sclerosis: A Pathophysiological Investigation in the Framework of Brain Dynamics Concepts.- 17. Brain Feynman Diagrams.- 17.1 Brain State Matrix: A Proposal to Approach Brain Function by Using EEG-EP Feynman Diagrams.- 17.2 Major Operating Rhythms (MORs) are to be Considered in Building Feynman Diagrams.- 18. Oscillatory Components of Evoked Potentials are Real Brain Responses Related to Function.- 18.1 Evoked Potentials are Ensembles of Brain Event-Related Oscillations in the Alpha, Theta, Delta, and Gamma Ranges.- 18.1.1 Justification for the Component Analysis of Evoked Potentials by Means of Digital Filtering.- 18.1.2 Frequency Analysis of Evoked Potentials Gives a "Cloudy Idea" in the Sense of Quantum Physics.- 18.1.3 Real Oscillatory Responses are Manifested Only in Major and Dominant Changes in the Oscillatory Responses.- 18.2 The Alpha Response in Cross-Modality Measurements.- 18.2.1 Intracranial EEG-EP Measurements in Cats (Auditory and Visual Cortex).- 18.2.2 Alpha Responses in Human EEG and MEG in Cross-Modality Experiments.- 18.2.3 Break of the Alpha Response in Multiple Sclerosis Patients in Light of Cross-Modality Experiments.- 18.2.4 Summary: Oscillatory Responses in Cross-Modality Experiments.- 18.3 Hippocampal Alpha Responses as Real Brain Oscillatory Responses.- 18.4 "Pure" Theta Responses.- 18.5 Delta Response: Examples from Experiments with "Cognitive" Paradigms.- 18.6 Application of Pharmacological Agents.- 18.7 EP Recordings in Children.- 18.8 Hippocampal EPs: Related to Measurements at the Cellular Level and Significant for the Question of Volume Conduction.- 18.8.1 Hippocampal EPs in Comparison to Measurements at the Cellular Level.- 18.8.2 Hippocampal EPs and the Question of Volume Conduction.- 18.8.3 Summary Concerning Hippocampal EPs.- 18.9 Wavelet Analysis.- 18.9.1 10 Hz Frequency Range.- 18.9.2 Delta Frequency Range: P300.- 18.10 Defined Brain States Show Oscillatory Behavior Without Filtering.- 18.11 Frequency Components of Evoked Potentials: Not Harmonics but Real Brain Responses.- 19. Conclusion.- Toward a Theory of Brain Oscillations.- References.- Author-Index.


weitere Titel der Reihe