Bültmann & Gerriets
Theoretische Atomphysik
von Harald Friedrich
Verlag: Springer Berlin Heidelberg
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-85161-2
Auflage: 2. Aufl. 1994
Erschienen am 08.03.2013
Sprache: Deutsch
Umfang: 317 Seiten

Preis: 42,99 €

42,99 €
merken
Inhaltsverzeichnis

1. Quantenmechanische Voraussetzungen.- 1.1 Wellenfunktionen und Bewegungsgleichungen.- 1.1.1 Zustände und Wellenfunktionen.- 1.1.2 Lineare Operatoren und Observable.- 1.1.3 Hamiltonoperator und Bewegungsgleichungen.- 1.2 Symmetrien.- 1.2.1 Konstanten der Bewegung und Symmetrien.- 1.2.2 Die radiale Schrödingergleichung.- 1.2.3 Beispiel: Der radialsymmetrische harmonische Oszillator.- 1.3 Gebundene und ungebundene Zustände.- 1.3.1 Gebundene Zustände.- 1.3.2 Ungebundene Zustände.- 1.3.3 Beispiele.- 1.3.4 Normierung der ungebundenen Zustände.- 1.4 Resonanzen und Kanäle.- 1.4.1 Kanäle.- 1.4.2 Feshbach-Resonanzen.- 1.4.3 Potentialresonanzen.- 1.5 Näherungsmethoden.- 1.5.1 Zeitunabhängige Störungstheorie.- 1.5.2 Ritzsches Variationsverfahren.- 1.5.3 Halbklassische Näherung.- 1.6 Drehimpuls und Spin.- 1.6.1 Addition von Drehimpulsen.- 1.6.2 Spin.- 1.6.3 Spin-Bahn-Kopplung.- Aufgaben.- Referenzen.- 2. Atome und Ionen.- 2.1 Ein-Elektron-Systeme.- 2.1.1 Das Wasserstoffatom.- 2.1.2 Wasserstoff-ähnliche Ionen.- 2.1.3 Die Diracgleichung.- 2.1.4 Relativistische Korrekturen zur Schrödingergleichung.- 2.2 Mehrelektronensysteme.- 2.2.1 Der Hamiltonoperator.- 2.2.2 Pauli-Prinzip und Slaterdeterminanten.- 2.2.3 Schalenaufbau der Atome.- 2.2.4 Klassifizierung atomarer Niveaus.- 2.3 Ansätze zur Lösung des N-Elektronenproblems.- 2.3.1 Das Hartree-Fock-Verfahren.- 2.3.2 Korrelationen und Konfigurationswechselwirkung.- 2.3.3 Das Thomas-Fermi-Modell.- 2.3.4 Dichtefunktionalmethoden.- 2.4 Elektromagnetische Übergänge.- 2.4.1 Übergänge allgemein, "Goldene Regel".- 2.4.2 Das elektromagnetische Feld.- 2.4.3 Wechselwirkung zwischen Atom und Feld.- 2.4.4 Emission und Absorption von Photonen.- 2.4.5 Auswahlregeln.- 2.4.6 Oszillatorstärken, Summenregeln.- Aufgaben.- Referenzen.- 3. Atomare Spektren.- 3.1 Ein Elektron im modifizierten Coulombpotential.- 3.1.1 Rydbergserien, Quantendefekte.- 3.1.2 Theorem von Seaton, Einkanal-Quantendefekttheorie.- 3.1.3 Photoabsorption und Photoionisation.- 3.2 Gekoppelte Kanäle.- 3.2.1 Close-Coupling-Gleichungen.- 3.2.2 Autoionisierende Resonanzen.- 3.2.3 Konfigurationswechselwirkung, Interferenz von Resonanzen.- 3.2.4 Gestörte Rydbergserien.- 3.3 Mehrkanal-Quantendefekttheorie (MQDT).- 3.3.1 Zwei gekoppelte Coulomb-Kanäle.- 3.3.2 Der Lu-Fano-Plot.- 3.3.3 Mehr als zwei Kanäle.- 3.4 Atome in äußeren Feldern.- 3.4.1 Atome in einem statischen, homogenen elektrischen Feld.- 3.4.2 Atome in einem statischen, homogenen Magnetfeld.- 3.4.3 Atome in einem zeitlich oszillierenden elektrischen Feld.- Aufgaben.- Referenzen.- 4. Einfache Reaktionen.- 4.1 Elastische Streuung.- 4.1.1 Elastische Streuung an einem kurzreichweitigen Potential.- 4.1.2 Elastische Streuung am reinen Coulombpotential.- 4.1.3 Elastische Streuung am modifizierten Coulombpotential, DWBA.- 4.1.4 Feshbachsche Projektoren. Optisches Potential.- 4.2 Spin und Polarisation.- 4.2.1 Auswirkung der Spin-Bahn-Kopplung.- 4.2.2 Anwendung auf allgemeine reine Spinzustände.- 4.2.3 Anwendung auf gemischte Spinzustände.- 4.3 Inelastische Streuung.- 4.3.1 Allgemeine Formulierung.- 4.3.2 Gekoppelte Radialgleichungen.- 4.3.3 Schwelleneffekte.- 4.3.4 Ein Beispiel.- 4.4 Ausgangskanäle mit zwei ungebundenen Elektronen.- 4.4.1 Allgemeine Formulierung.- 4.4.2 Anwendung auf Elektronen.- 4.4.3 Beispiel.- Aufgaben.- Referenzen.- 5. Spezielle Themen.- 5.1 Multiphoton-Absorption.- 5.1.1 Experimentelle Beobachtungen zur Multiphoton-Ionisation.- 5.1.2 Berechnung von Ionisationswahrscheinlichkeiten über Volkov-Zustände.- 5.1.3 Berechnung von Ionisationswahrscheinlichkeiten über Floquet-Zustände.- 5.2 Klassische Mechanik und Quantenmechanik.- 5.2.1 Phasenraumdichten.- 5.2.2 Kohärente Zustände.- 5.2.3 Kohärente Wellenpakete in realen Systemen.- 5.3 Chaos.- 5.3.1 Chaos in der klassischen Mechanik.- 5.3.2 Spuren des Chaos in der Quantenmechanik.- 5.3.3 Ionisation des Wasserstoffatoms in einem Mikrowellenfeld.- 5.3.4 Das Wasserstoffatom in einem homogenen Magnetfeld.- Aufgaben.- Referenzen.- Anhang: Spezielle mathematische Funktionen.