Bültmann & Gerriets
Computational Methods for Kinetic Models of Magnetically Confined Plasmas
von J. Killeen, G. D. Kerbel, M. G. McCoy, A. A. Mirin
Verlag: Springer Berlin Heidelberg
Reihe: Scientific Computation
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-85954-0
Auflage: 1986
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 199 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Inhaltsverzeichnis

1 Introduction.- References.- 2 Fokker - Planck Models of Multispecies Plasmas in Uniform Magnetic Fields.- 2.1. Mathematical Model.- 2.1.1. Fokker - Planck Equations.- 2.1.2. Time-Varying Forces.- 2.1.3. Initial Conditions and Boundary Conditions in Velocity Space.- 2.1.4. Source and Loss Terms in Velocity Space.- 2.2. Solution for a Multispecies Plasma in a One-Dimensional Velocity Space.- 2.2.1. Numerical Methods.- 2.2.2. Applications.- 2.3. Solution in a Two-Dimensional Velocity Space Using an Expansion in Pitch-Angle.- 2.3.1. Numerical Methods.- 2.3.2. Applications.- 2.3.3. Modification of the Lowest Normal Mode Code of Section 2.2 to Include Anisotropic Rosenbluth Potentials.- 2.4. Solution Using Finite-Differences in a Two-Dimensional Velocity Space.- 2.4.1. Numerical Methods.- 2.4.2. Applications.- References.- 3 Collisional Kinetic Models of Multispecies Plasmas in Nonuniform Magnetic Fields.- 3.1. Mathematical Model.- 3.1.1. Bounce-Averaged Fokker - Planck Theory.- 3.1.2. Bounce-Averaged Resonant Diffusion.- 3.1.3. Velocity Space Boundary Conditions.- 3.1.4. Particle and Energy Source and Loss Terms.- 3.1.5. Velocity Space Loss Region Models.- 3.2. Numerical Solution of Bounce-Averaged Fokker - Planck Equations.- 3.2.1. Numerical Methods.- 3.2.2. Bounce-Averaging the Fokker - Planck Coefficients.- 3.2.3. Flux Conservation at the Trapped/Passing Boundary.- 3.2.4. Imphcit Time Advancement: Operator Splitting.- 3.3. Applications.- 3.3.1. Neoclassical Corrections to Classical Resistivity.- 3.3.2. Scanning Charge-Exchange Analyzer Diagnostic for Tokamaks.- Appendix 3 A. Coefficients of the Bounce-Averaged Operator.- Appendix 3B. Boundary Layer Diagnostic.- Appendix 3C. Tangent Resonance Phenomena.- Appendix 3D. Wave Models.- 3D.1. Model Icrft.- 3D.2. Model Icrft0.- References.- 4 A Fokker - Planck/Transport Model for Neutral Beam-Driven Tokamaks.- 4.1. Mathematical Model and Numerical Methods.- 4.1.1. Energetic Ions.- 4.1.2. Bulk Plasma Ions and Electrons.- 4.1.3. Neutrals.- 4.1.4. Fusion.- 4.2. Applications.- 4.2.1. Princeton Large Torus.- 4.2.2. Tokamak Fusion Test Reactor.- 4.2.3. Divertor Injection Tokamak Experiment (DITE).- References.


andere Formate
weitere Titel der Reihe