Bültmann & Gerriets
Geometrie - Anschauung und Begriffe
Vorstellen, Verstehen, Weiterdenken. Eine Einführung für Studierende.
von Jost-Hinrich Eschenburg
Verlag: Springer Fachmedien Wiesbaden
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-658-28225-7
Auflage: 1. Aufl. 2020
Erschienen am 24.02.2020
Sprache: Deutsch
Umfang: 160 Seiten

Preis: 22,99 €

22,99 €
merken
zum Hardcover 29,99 €
Biografische Anmerkung
Inhaltsverzeichnis

Prof. Dr. Jost-Hinrich Eschenburg, Universität Augsburg, Institut für Mathematik




Was ist Geometrie.- Parallelität: Affine Geometrie.- Von der affinen Geometrie zur Linearen Algebra.- Definition des affinen Raums.- Parallelentreue und semiaffine Abbildungen.- Parallelprojektionen.- Affine Koordinaten und Schwerpunkt.- Inzidenz: Projektive Geometrie.- Zentralperspektive.- Fernpunkte und Projektionsgeraden.- Projektiver und affiner Raum.-Semiprojektive Abbildungen und Kollineationen.- Kegelschnitte und Quadriken; Homogenisierung.- Die Sätze von Desargues und Brianchon.- Dualität und Polarität; Satz von Pascal.- Das Doppelverhältnis.- Abstand: Euklidische Geometrie.- Der Satz des Pythagoras.- Isometrien des euklidischen Raums.- Klassifikation von Isometrien.- Platonische Körper.- Symmetriegruppen von platonischen Körpern.- Endliche Drehgruppen und Kristallgruppen.- Metrische Eigenschaften der Kegelschnitte.- Krümmung: Differentialgeometrie.- Glattheit.- Fundamentalformen und Krümmungen.- Charakterisierung von Sphären und Hyperebenen.- Orthogonale Hyperflächensysteme.- Winkel: Konforme Geometrie.- Konforme Abbildungen.- Inversionen.- Konforme und kugeltreue Abbildungen.- Die stereographische Projektion.- Der Raum der Kugeln.-Winkelabstand: Sphärische und Hyperbolische Geometrie. Der hyperbolische Raum. Abstand auf der Sphäre und im hyperbolischen Raum. Modelle der Hyperbolischen Geometrie.- Übungen.- Lösungen.


andere Formate