Bültmann & Gerriets
Particle Accelerator Physics I
Basic Principles and Linear Beam Dynamics
von Helmut Wiedemann
Verlag: Springer Berlin Heidelberg
Reihe: Particle Accelerator Physics I
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-662-03827-7
Auflage: 2nd ed. 1999
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 449 Seiten

Preis: 72,99 €

72,99 €
merken
Inhaltsverzeichnis

1. Introduction.- 1.1 Short Historical Overview.- 1.2 Particle Accelerator Systems.- 1.2.1 Basic Components of Accelerator Facilities.- 1.2.2 Applications of Particle Accelerators.- 1.3 Basic Definitions and Formulas.- 1.3.1 Units and Dimensions.- 1.3.2 Basic Relativistic Formalism.- 1.3.3 Particle Collisions at High Energies.- 1.4 Basic Principles of Particle-Beam Dynamics.- 1.4.1 Stability of a Charged-Particle Beam.- Problems.- 2. Linear Accelerators.- 2.1 Principles of Linear Accelerators.- 2.1.1 Charged Particles in Electric Fields.- 2.1.2 Electrostatic Accelerators.- 2.1.3 Induction Linear Accelerator.- 2.2 Acceleration by rf Fields.- 2.2.1 Basic Principle of Linear Accelerators.- 2.2.2 Waveguides for High Frequency EM Waves.- 2.3 Preinjector Beam Preparation.- 2.3.1 Prebuncher.- 2.3.2 Beam Chopper.- Problems.- 3. Circular Accelerators.- 3.1 Betatron.- 3.2 Weak Focusing.- 3.3 Adiabatic Damping.- 3.4 Acceleration by rf Fields.- 3.4.1 Microtron.- 3.4.2 Cyclotron.- 3.4.3 Synchro Cyclotron.- 3.4.4 Isochron Cyclotron.- 3.5 Synchrotron.- 3.5.1 Storage Ring.- 3.6 Summary of Characteristic Parameters.- Problems.- 4. Charged Particles in Electromagnetic Fields.- 4.1 The Lorentz Force.- 4.2 Coordinate System.- 4.3 Fundamentals of Charged Particle Beam Optics.- 4.3.1 Particle Beam Guidance.- 4.3.2 Particle Beam Focusing.- 4.4 Multipole Field Expansion.- 4.4.1 Laplace Equation.- 4.4.2 Magnetic Field Equations.- 4.5 Multipole Fields for Beam Transport Systems.- 4.6 Multipole Field Patterns and Pole Profiles.- 4.7 Equations of Motion in Charged Particle Beam Dynamics.- 4.8 General Solution of the Equations of Motion.- 4.8.1 Linear Unperturbed Equation of Motion.- 4.8.2 Wronskian.- 4.8.3 Perturbation Terms.- 4.8.4 Dispersion Function.- 4.9 Building Blocks for Beam Transport Lines.- 4.9.1 General Focusing Properties.- 4.9.2 Chromatic Properties.- 4.9.3 Achromatic Lattices.- 4.9.4 Isochronous Systems.- Problems.- 5. Linear Beam Dynamics.- 5.1 Linear Beam Transport Systems.- 5.1.1 Nomenclature.- 5.2 Matrix Formalism in Linear Beam Dynamics.- 5.2.1 Driftspace.- 5.2.2 Quadrupole Magnet.- 5.2.3 Thin Lens Approximation.- 5.2.4 Quadrupole End Field Effects.- 5.2.5 Quadrupole Design Concepts.- 5.3 Focusing in Bending Magnets.- 5.3.1 Sector Magnets.- 5.3.2 Wedge Magnets.- 5.3.3 Rectangular Magnet.- 5.4 Particle Beams and Phase Space.- 5.4.1 Beam Emittance.- 5.4.2 Liouville's Theorem.- 5.4.3 Transformation in Phase Space.- 5.4.4 Measurement of the Beam Emittance.- 5.5 Betatron Functions.- 5.5.1 Beam Envelope.- 5.5.2 Beam Dynamics in Terms of Betatron Functions.- 5.5.3 Beam Dynamics in Normalized Coordinates.- 5.6 Dispersive Systems.- 5.6.1 Analytical Solution.- 5.6.2 (3 × 3)-Transformation Matrices.- 5.6.3 Linear Achromat.- 5.6.4 Spectrometer.- 5.7 Path Length and Momentum Compaction.- Problems.- 6. Periodic Focusing Systems.- 6.1 FODO Lattice.- 6.1.1 Scaling of FODO Parameters.- 6.2 Betatron Motion in Periodic Structures.- 6.2.1 Stability Criterion.- 6.2.2 General FODO Lattice.- 6.3 Beam Dynamics in Periodic Closed Lattices.- 6.3.1 Hill's Equation.- 6.3.2 Periodic Betatron Functions.- 6.4 Periodic Dispersion Function.- 6.4.1 Scaling of the Dispersion in a FODO Lattice.- 6.4.2 General Solution for the Periodic Dispersion.- 6.5 Periodic Lattices in Circular Accelerators.- 6.5.1 Synchrotron Lattice.- 6.5.2 Phase Space Matching.- 6.5.3 Dispersion Matching.- 6.5.4 Magnet Free Insertions.- 6.5.5 Low Beta Insertions.- 6.5.6 Example of a Colliding Beam Storage Ring.- Problems.- 7. Perturbations in Beam Dynamics.- 7.1 Magnet Alignment Errors.- 7.2 Dipole Field Perturbations.- 7.2.1 Existence of Equilibrium Orbits.- 7.2.2 Closed Orbit Distortion.- 7.2.3 Closed Orbit Correction.- 7.3 Quadrupole Field Perturbations.- 7.3.1 Betatron Tune Shift.- 7.3.2 Resonances and Stop Band Width.- 7.3.3 Perturbation of Betatron Functions.- 7.4 Resonance Theory.- 7.4.1 Resonance Conditions.- 7.4.2 Coupling Resonances.- 7.4.3 Resonance Diagram.- 7.5 Chromatic Effects in a Circular Accelerator.- 7.5.1 Chromaticity.- 7.5.2 Chromaticity Correction.- Problems.- 8. Charged Particle Acceleration.- 8.1 Longitudinal Particle Motion.- 8.1.1 Longitudinal Phase Space Dynamics.- 8.1.2 Equation of Motion in Phase Space.- 8.1.3 Phase Stability.- 8.1.4 Acceleration of Charged Particles.- 8.2 Longitudinal Phase Space Parameters.- 8.2.1 Separatrix Parameters.- 8.2.2 Momentum Acceptance.- 8.2.3 Bunch Length.- 8.2.4 Longitudinal Beam Emittance.- 8.2.5 Phase Space Matching.- Problems.- 9. Synchrotron Radiation.- 9.1 Physics of Synchrotron Radiation.- 9.1.1 Coulomb Regime.- 9.1.2 Radiation Regime.- 9.1.3 Spatial Distribution of Synchrotron Radiation.- 9.1.4 Radiation Power.- 9.1.5 Synchrotron Radiation Spectrum.- 9.1.6 Photon Beam Divergence.- 9.2 Coherent Radiation.- 9.2.1 Temporal Coherent Synchrotron Radiation.- 9.2.2 Spatially Coherent Synchrotron Radiation.- 9.2.3 Spectral Brightness.- 9.2.4 Matching.- 9.3 Insertion Devices.- 9.3.1 Bending Magnet Radiation.- 9.3.2 Wave Length Shifter.- 9.3.3 Wiggler Magnet Radiation.- 9.3.4 Undulator Radiation.- 9.4 Back Scattered Photons.- 9.4.1 Radiation Intensity.- Problems.- 10. Particle Beam Parameters.- 10.1 Definition of Beam Parameters.- 10.1.1 Beam Energy.- 10.1.2 Time Structure.- 10.1.3 Beam Current.- 10.1.4 Beam Dimensions.- 10.2 Damping.- 10.2.1 Robinson Criterion.- 10.3 Particle Distribution in Phase Space.- 10.3.1 Equilibrium Phase Space.- 10.3.2 Transverse Beam Parameters.- 10.4 Variation of the Equilibrium Beam Emittance.- 10.4.1 Beam Emittance and Wiggler Magnets.- 10.4.2 Damping Wigglers.- 10.5 Variation of the Damping Distribution.- 10.5.1 Damping Partition and rf Frequency.- 10.5.2 Robinson Wiggler.- 10.5.3 Damping Partition and Synchrotron Oscillation.- 10.5.4 Can We Eliminate the Beam Energy Spread?.- Problems.- 11. Beam Life Time.- 11.1 Beam Lifetime and Vacuum.- 11.1.1 Elastic Scattering.- 11.1.2 Inelastic Scattering.- 11.2 Ultra High Vacuum System.- 11.2.1 Thermal Gas Desorption.- 11.2.2 Synchrotron Radiation Induced Desorption.- Problems.- 12. Collective Phenomena.- 12.1 Linear Space-Charge Effects.- 12.1.1 Self Field for Particle Beams.- 12.1.2 Forces from Space-Charge Fields.- 12.2 Beam-Beam Effect.- 12.3 Wake Fields.- 12.3.1 Parasitic Mode Losses and Impedances.- 12.4 Beam Instabilities.- Problems.- 13. Beam Emittance and Lattice Design.- 13.1 Equilibrium Beam Emittance in Storage Rings.- 13.2 Beam Emittance in Periodic Lattices.- 13.2.1 The Double Bend Achromat Lattice (DBA)....- 13.2.2 The Triple Bend Achromat Lattice (TBA).- 13.2.3 The Triplet Achromat Lattice (TAL).- 13.2.4 The FODO Lattice.- 13.3 Optimum Emittance for Colliding Beam Storage Rings.- Problems.- Appendices.- A. Suggested Reading.- B. Bibliography.- References.- Author Index.