Bültmann & Gerriets
Computational Intelligence in Economics and Finance
von Paul P. Wang
Verlag: Springer Berlin Heidelberg
Reihe: Advanced Information Processing
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-662-06373-6
Auflage: 2004
Erschienen am 09.03.2013
Sprache: Englisch
Umfang: 480 Seiten

Preis: 213,99 €

213,99 €
merken
Inhaltsverzeichnis
Klappentext

1. Computational Intelligence in Economics and Finance.- 2. Intelligent System to Support Judgmental Business Forecasting: the Case of Estimating Hotel Room Demand.- 3. Fuzzy Investment Analysis Using Capital Budgeting and Dynamic Programming Techniques.- 4. Rough Sets Theory and Multivariate Data Analysis in Classification Problems: a Simulation Study.- 5. Forecasting the Opening Cash Price Index in Integrating Grey Forecasting and Neural Networks: Evidence from the SGX-DT MSCI Taiwan Index Futures Contracts.- 6. A Support Vector Machine Model for Currency Crises Discrimination.- 7. Saliency Analysis of Support Vector Machines for Feature Selection in Financial Time Series Forecasting.- 8. Searching Financial Patterns with Self-organizing Maps.- 9. Effective Position of European Firms in the Face of Monetary Integration Using Kohonen's SOFM.- 10. Financial Applications of Wavelets and Self-organizing Maps.- 11. Pattern Matching in Multidimensional Time Series.- 12. Structural Pattern Discovery in Time Series Databases.- 13. Are Efficient Markets Really Efficient?: Can Financial Econometric Tests Convince Machine-Learning People?.- 14. Nearest-Neighbour Predictions in Foreign Exchange Markets.- 15. Discovering Hidden Patterns with Genetic Programming.- 16. Numerical Solutions to a Stochastic Growth Model Based on the Evolution of a Radial Basis Network.- 17. Evolutionary Strategies vs. Neural Networks: an Inflation Forecasting Experiment.- 18. Business Failure Prediction Using Modified Ants Algorithm.- 19. Towards Automated Optimal Equity Portfolios Discovery in a Financial Knowledge Management System.- 20. White Noise Tests and Synthesis of APT Economic Factors Using TFA.- 21. Learning and Monetary Policy in a Spectral Analysis Representation.- 22. International Transmission of Business Cycles: a Self-organizing Markov-Switching State-Space Model.- 23. How Information Technology Creates Business Value in the Past and in the Current Electronic Commerce (EC) Era.- Author Index.



Due to the ability to handle specific characteristics of economics and finance forecasting problems like e.g. non-linear relationships, behavioral changes, or knowledge-based domain segmentation, we have recently witnessed a phenomenal growth of the application of computational intelligence methodologies in this field.

In this volume, Chen and Wang collected not just works on traditional computational intelligence approaches like fuzzy logic, neural networks, and genetic algorithms, but also examples for more recent technologies like e.g. rough sets, support vector machines, wavelets, or ant algorithms. After an introductory chapter with a structural description of all the methodologies, the subsequent parts describe novel applications of these to typical economics and finance problems like business forecasting, currency crisis discrimination, foreign exchange markets, or stock markets behavior.