Bültmann & Gerriets
Inverse Galois Theory
von Gunter Malle, B. Heinrich Matzat
Verlag: Springer Berlin Heidelberg
Reihe: Springer Monographs in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-662-55420-3
Auflage: 2nd ed. 2018
Erschienen am 27.07.2018
Sprache: Englisch
Umfang: 533 Seiten

Preis: 139,09 €

Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

Gunter Malle is professor of mathematics at the TU Kaiserslautern, Germany. He completed his doctorate at the TH Karlsruhe in 1986 with a dissertation on "Exzeptionelle Gruppen vom Lie-Typ als Galoisgruppen". He obtained his first professorship at Kassel University in 1998, and in 2005 was offered his current position. His research focus is on group representation theory and number theory. He is the coauthor of the books "Linear Algebraic Groups and Finite Groups of Lie Type" and "Inverse Galois Theory" as well as of multiple journal articles. He is currently serving on the editorial boards of six journals.


Bernd Heinrich Matzat is professor of mathematics at the University of Heidelberg, Germany. In 1972 he earned his doctorate at the University of Karlsruhe with a dissertation on "Über Weierstraßpunkte von Fermatkörpern", and in 1981 his Dr. habil. with the paper "Zur Konstruktion von Zahl- und Funktionenkörpern mit vorgegebenen Galoisgruppen". His first professorship was at the TU Berlin in 1987 and he moved from there to Heidelberg University in 1988. His research focus is on inverse Galois theory and differential Galois theory. He is author of the books "Konstruktive Galoistheorie", "Algorithmic algebra and number theory" and "Inverse Galois Theory" as well as of multiple journal articles.




I.The Rigidity Method.- II. Applications of Rigidity.- III. Action of Braids.- IV. Embedding Problems.- V. Additive Polynomials.- VI.Rigid Analytic Methods.- Appendix: Example Polynomials.- References.- Index.



A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.


andere Formate
weitere Titel der Reihe