Bültmann & Gerriets
Mathematical Physics: Classical Mechanics
von Andreas Knauf
Übersetzung: Jochen Denzler
Verlag: Springer Berlin Heidelberg
Reihe: La Matematica per il 3+2
Reihe: UNITEXT Nr. 109
Reihe: UNITEXT /La Matematica per il 3+2 Nr. 109
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-662-55774-7
Auflage: 1st ed. 2018
Erschienen am 24.02.2018
Sprache: Englisch
Umfang: 683 Seiten

Preis: 96,29 €

96,29 €
merken
zum Hardcover 106,99 €
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

Andreas Knauf is a professor of mathematics at the Friedrich-Alexander Universität Erlangen-Nürnberg. His research interests include classical, quantum and statistical mechanics.

He is the author, with Markus Klein, of the book ,Classical Planar Scattering by Coulombic Potentials' and, with Yakov Sinai, of the book ,Classical Nonintegrability, Quantum Chaos'.



Remarks on Mathematial Physics.- 1 Introduction.- 2 Dynamical Systems.- 3 Ordinary Differential Equations.- 4 Linear Dynamics.- 5 Classification of Linear Flows.- 6 Hamiltonian Equations and Symplectic Group.- 7 Stability Theory.- 8 Variational Principles.- 9 Ergodic Theory.- 10 Symplectic Geometry.- 11 Motion in a Potential.- 12 Scattering Theory.- 13 Integrable Systems and Symmetries.- 14 Rigid and Non-Rigid Bodies.- 15 Perturbation Theory.- 16 Relativistic Mechanics.- 17 Symplectic Topology.- A Topological Spaces and Manifolds.- B Differential Forms.- C Convexity and Legendre Transform.- D Fixed Point Theorems, and Results about Inverse Images.- E Group Theory.- F Bundles, Connection, Curvature.- G Morse Theory.- H Solutions of the Exercises.- Bibiography.- Index of Proper Names.- Table of Symbols.- Image Credits.- Index.



As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics.

The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.


andere Formate
weitere Titel der Reihe