Bültmann & Gerriets
Design and Optimization of a MEMS-Based Piezoresistive Accelerometer
Computational Analysis of a MEMS-Based Accelerometer with Silicon Nanowire Piezoresistors for Head Injuries Monitoring
von Marco Messina, James Njuguna
Verlag: LAP LAMBERT Academic Publishing
Hardcover
ISBN: 9786202081795
Erschienen am 15.12.2017
Sprache: Englisch
Format: 220 mm [H] x 150 mm [B] x 20 mm [T]
Gewicht: 500 Gramm
Umfang: 324 Seiten

Preis: 79,90 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 7. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

79,90 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

This work focuses on the design improvement of a tri-axial piezoresistive accelerometer specifically designed for head injuries monitoring where medium-G impacts are common, for example in sports such as motorsport and American football. Given the particular biomedical and biomechanical application the device requires the highest sensitivity achievable with a single proof mass approach, where basically all three axes of measurements are detected with a single mass suspended by surrounding beams. Moreover, a very low error, below 1%, is expected for these type of applications where accuracy is paramount. The optimization method used is based on the progressive increment of the sensor mass moment of inertia (MMI) in all axes. The theoretical hypothesis to confirm is that an increment of MMI of the device proof mass would determine an increment of device sensitivity with a simultaneous reduction of cross-talk in the particular axis under study. The work numerically demonstrates the hypothesis validity by simulating the optimized device mechanical structures with Finite Element Method. A final optimal shape is selected as the best possible output of the optimization process.



Dr Messina has long-standing interest in nanotechnology and MEMS design and development with a patent published at the European Patent Office in 2014. He has extensive research experience in Wireless Sensors Networks (IIoT) and structural integrity analysis projects with specialization on composite materials simulation, manufacturing and testing.