Bültmann & Gerriets
Quantum Neural Computation
von Tijana T. Ivancevic, Vladimir G. Ivancevic
Verlag: Springer Netherlands
Reihe: Intelligent Systems, Control and Automation: Science and Engineering Nr. 40
Hardcover
ISBN: 9789401777773
Auflage: Softcover reprint of the original 1st ed. 2010
Erschienen am 23.08.2016
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 51 mm [T]
Gewicht: 1404 Gramm
Umfang: 948 Seiten

Preis: 267,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 15. Oktober.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Quantum Neural Computation is a graduate¿level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain¿s nonlinear complexity, in order to perform a super¿high¿speed and error¿free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.



1 Introduction
1.1 Neurodynamics
1.2 Quantum Computation
1.3 Discrete Quantum Computers
1.4 Topological Quantum Computers
1.5 Computation at the Edge of Chaos and Quantum Neural Networks
1.6 Adaptive Path Integral: An 1-Dimensional QNN
1.6.1 Computational Partition Function
1.6.2 From Thermodynamics to Quantum Field Theory
1.6.3 1-Dimensional QNNs
1.7 Brain Topology vs. Small¿World Topology
1.8 Quantum Brain and Mind
1.8.1 Connectionism, Control Theory and Brain Theory
1.8.2 Neocortical Biophysics
1.8.3 Quantum Neurodynamics
1.8.4 Bi-Stable Perception and Consciousness
1.9 Notational Conventions 2 Brain and Classical Neural Networks
2.1 Human Brain
2.1.1 Basics of Brain Physiology
2.1.2 Modern 3D Brain Imaging
2.2 Biological versus Artificial Neural Networks
2.2.1 Common Discrete ANNs
2.2.2 Common Continuous ANNs
2.3 Synchronization in Neurodynamics
2.3.1 Phase Synchronization in Coupled Chaotic Oscillators
2.3.2 Oscillatory Phase Neurodynamics
2.3.3 Kuramoto Synchronization Model
2.3.4 Lyapunov Chaotic Synchronization
2.4 Spike Neural Networks and Wavelet Resonance
2.4.1 Ensemble Neuron Model
2.4.2 Wavelet Neurodynamics
2.4.3 Wavelets of Epileptic Spikes
2.5 Human Motor Control and Learning
2.5.1 Motor Control
2.5.2 Human Memory
2.5.3 Human Learning
2.5.4 Spinal MusculöSkeletal Control
2.5.5 Cerebellum and Muscular Synergy 3 Quantum Theory Basics
3.1 Basics of Non-Relativistic Quantum Mechanics
3.1.1 Soft Introduction to Quantum Mechanics
3.1.2 Quantum States and Operators
3.1.3 The Tree Standard Quantum Pictures
3.1.4 Dirac¿s Probability Amplitude and Perturbation
3.1.5 State¿Space for n Non-Relativistic Quantum Particles
3.2 Introduction to Quantum Fields
3.2.1 Amplitude, Relativistic Invariance and Causality
3.2.2 Gauge Theories
3.2.3 Free andInteracting Field Theories
3.2.4 Dirac¿s Quantum Electrodynamics (QED)
3.2.5 Abelian Higgs Model
3.2.6 Topological Quantum Computation
3.3 The Feynman Path Integral
3.3.1 The Action¿Amplitude Formalism
3.3.2 Correlation Functions and Generating Functional
3.3.3 Quantization of the Electromagnetic Field
3.3.4 Wavelet¿Based QFT
3.4 The Path¿Integral TQFT
3.4.1 Schwarz¿Type and Witten¿Type Theories
3.4.2 Hodge Decomposition Theorem
3.4.3 Hodge Decomposition and Chern¿Simons Theory
3.5 Non-Abelian Gauge Theories
3.5.1 Introduction to Non-Abelian Theories
3.5.2 Yang¿Mills Theory
3.5.3 Quantization of Yang¿Mills theory
3.5.4 Basics of Conformal Field Theory (CFT) 4 Spatio-Temporal Chaos, Solitons and NLS
4.1 Reaction¿Diffusion Processes and Ricci Flow
4.1.1 BiöReaction¿Diffusion Systems
4.1.2 Reactive Neurodynamics
4.1.3 Dissipative Evolution Under the Ricci Flow
4.2 Turbulence and Chaos in PDEs
4.3 Quantum Chaos and Its Control
4.3.1 Quantum Chaos vs. Classical Chaos
4.3.2 Optimal Control of Quantum Chaos
4.4 Solitions
4.4.1 Short History of Solitons
4.4.2 Lie¿Poisson Bracket
4.4.3 Solitons and Muscular Contraction
4.5 Dispersive Wave Equations and Stability of Solitons
4.5.1 KdV Solitons
4.5.2 The Inverse Scattering Approach
4.6 Nonlinear Schr¿odinger Equation (NLS)
4.6.1 Cubic NLS
4.6.2 Nonlinear Wave and Schr¿odinger Equations
4.6.3 Physical NLS¿Derivation
4.6.4 A Compact Attractor for High¿Dimensional NLS
4.6.5 Finite¿Difference Scheme for NLS
4.6.6 Method of Lines for NLS 5 Quantum Brain and Cognition
5.1 Biochemistry of Microtubules
5.2 Kink Soliton Model of MT¿Dynamics
5.3 Macrö and Microscopic Neurodynamical Self¿Similarity
5.3.1 Open Liouville Equation
5.4 Dissipative Quantum Brain Model
5.5 QED Brain Model
5.6


andere Formate