Bültmann & Gerriets
Machine Learning for Environmental Monitoring in Wireless Sensor Networks
von Parikshit N. Mahalle, Sachin Sakhare, Dattatray G. Takale
Verlag: IGI Global
Gebundene Ausgabe
ISBN: 9798369339404
Erschienen am 23.09.2024
Sprache: Englisch
Format: 260 mm [H] x 183 mm [B] x 31 mm [T]
Gewicht: 1121 Gramm
Umfang: 496 Seiten

Preis: 381,80 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 28. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

381,80 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext

Today, data fuels everything we do in a highly connected world. However, traditional environmental monitoring methods often fail to provide timely and accurate data for effective decision-making in today's rapidly changing ecosystems. The reliance on manual data collection and outdated technologies results in gaps in data coverage, making it challenging to detect and respond to environmental changes in real time. Additionally, integration between monitoring systems and advanced data analysis tools is necessary to derive actionable insights from collected data. As a result, environmental managers and policymakers face significant challenges in effectively monitoring, managing, and conserving natural resources in a rapidly evolving environment. Machine Learning for Environmental Monitoring in Wireless Sensor Networks offers a comprehensive solution to the limitations of traditional environmental monitoring methods. By harnessing the power of Wireless Sensor Networks (WSNs) and advanced machine learning algorithms, this book presents a novel approach to ecological monitoring that enables real-time, high-resolution data collection and analysis. By integrating WSNs and machine learning, environmental stakeholders can gain deeper insights into complex ecological processes, allowing for more informed decision-making and proactive management of natural resources.