Bültmann & Gerriets
Optimization with Multivalued Mappings
Theory, Applications and Algorithms
von Stephan Dempe, Vyacheslav Kalashnikov
Verlag: Springer Us
Reihe: Springer Optimization and Its Nr. 2
Gebundene Ausgabe
ISBN: 978-0-387-34220-7
Auflage: 2006 edition
Erschienen am 18.07.2006
Sprache: Englisch
Format: 234 mm [H] x 156 mm [B] x 18 mm [T]
Gewicht: 585 Gramm
Umfang: 276 Seiten

Preis: 113,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 21. November in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods).

The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.

Audience

This book is intended for researchers, graduate students and practitioners in the fields of applied mathematics, operations research, and economics.



Bilevel Programming.- Optimality conditions for bilevel programming problems.- Path-based formulations of a bilevel toll setting problem.- Bilevel programming with convex lower level problems.- Optimality criteria for bilevel programming problems using the radial subdifferential.- On approximate mixed Nash equilibria and average marginal functions for two-stage three-players games.- Mathematical Programs with Equilibrium Constraints.- A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints.- On the use of bilevel programming for solving a structural optimization problem with discrete variables.- On the control of an evolutionary equilibrium in micromagnetics.- Complementarity constraints as nonlinear equations: Theory and numerical experience.- A semi-infinite approach to design centering.- Set-Valued Optimization.- Contraction mapping fixed point algorithms for solving multivalued mixed variational inequalities.- Optimality conditions for a d.c. set-valued problem via the extremal principle.- First and second order optimality conditions in set optimization.


andere Formate
weitere Titel der Reihe